Tenth Western Black Bear Workshop
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wolf Interactions with Non-Prey
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Northern Prairie Wildlife Research Center US Geological Survey 2003 Wolf Interactions with Non-prey Warren B. Ballard Texas Tech University Ludwig N. Carbyn Canadian Wildlife Service Douglas W. Smith US Park Service Follow this and additional works at: https://digitalcommons.unl.edu/usgsnpwrc Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biodiversity Commons, Environmental Policy Commons, Recreation, Parks and Tourism Administration Commons, and the Terrestrial and Aquatic Ecology Commons Ballard, Warren B.; Carbyn, Ludwig N.; and Smith, Douglas W., "Wolf Interactions with Non-prey" (2003). USGS Northern Prairie Wildlife Research Center. 325. https://digitalcommons.unl.edu/usgsnpwrc/325 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Northern Prairie Wildlife Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 10 Wolf Interactions with Non-prey Warren B. Ballard, Ludwig N. Carbyn, and Douglas W. Smith WOLVES SHARE THEIR ENVIRONMENT with many an wolves and non-prey species. The inherent genetic, be imals besides those that they prey on, and the nature of havioral, and morphological flexibility of wolves has the interactions between wolves and these other crea allowed them to adapt to a wide range of habitats and tures varies considerably. Some of these sympatric ani environmental conditions in Europe, Asia, and North mals are fellow canids such as foxes, coyotes, and jackals. America. Therefore, the role of wolves varies consider Others are large carnivores such as bears and cougars. -
Monitoring Wolverines in Northeast Oregon
Monitoring Wolverines in Northeast Oregon January 2011 – December 2012 Final Report Authors: Audrey J. Magoun Patrick Valkenburg Clinton D. Long Judy K. Long Submitted to: The Wolverine Foundation, Inc. February 2013 Cite as: A. J. Magoun, P. Valkenburg, C. D. Long, and J. K. Long. 2013. Monitoring wolverines in northeast Oregon. January 2011 – December 2012. Final Report. The Wolverine Foundation, Inc., Kuna, Idaho. [http://wolverinefoundation.org/] Copies of this report are available from: The Wolverine Foundation, Inc. [http://wolverinefoundation.org/] Oregon Department of Fish and Wildlife [http://www.dfw.state.or.us/conservationstrategy/publications.asp] Oregon Wildlife Heritage Foundation [http://www.owhf.org/] U. S. Forest Service [http://www.fs.usda.gov/land/wallowa-whitman/landmanagement] Major Funding and Logistical Support The Wolverine Foundation, Inc. Oregon Department of Fish and Wildlife Oregon Wildlife Heritage Foundation U. S. Forest Service U. S. Fish and Wildlife Service Wolverine Discovery Center Norcross Wildlife Foundation Seattle Foundation Wildlife Conservation Society National Park Service 2 Special thanks to everyone who provided contributions, assistance, and observations of wolverines in the Wallowa-Whitman National Forest and other areas in Oregon. We appreciate all the help and interest of the staffs of the Oregon Department of Fish and Wildlife, Oregon Wildlife Heritage Foundation, U. S. Forest Service, U. S. Fish and Wildlife Service, Wildlife Conservation Society, and the National Park Service. We also thank the following individuals for their assistance with the field work: Jim Akenson, Holly Akenson, Malin Aronsson, Norma Biggar, Ken Bronec, Steve Bronson, Roblyn Brown, Vic Coggins, Alex Coutant, Cliff Crego, Leonard Erickson, Bjorn Hansen, Mike Hansen, Hans Hayden, Tim Hiller, Janet Hohmann, Pat Matthews, David McCullough, Glenn McDonald, Jamie McFadden, Kendrick Moholt, Mark Penninger, Jens Persson, Lynne Price, Brian Ratliff, Jamie Ratliff, John Stephenson, John Wyanens, Rebecca Watters, Russ Westlake, and Jeff Yanke. -
The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States
United States The Scientific Basis for Conserving Forest Carnivores Department of Agriculture Forest Service American Marten, Fisher, Lynx, Rocky Mountain and Wolverine Forest and Range Experiment Station in the Western United States Fort Collins, Colorado 80526 General Technical Report RM-254 Abstract Ruggiero, Leonard F.; Aubry, Keith B.; Buskirk, Steven W.; Lyon, L. Jack; Zielinski, William J., tech. eds. 1994. The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States. Gen. Tech. Rep. RM-254. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 184 p. This cooperative effort by USDA Forest Service Research and the National Forest System assesses the state of knowledge related to the conservation status of four forest carnivores in the western United States: American marten, fisher, lynx, and wolverine. The conservation assessment reviews the biology and ecology of these species. It also discusses management considerations stemming from what is known and identifies information needed. Overall, we found huge knowledge gaps that make it difficult to evaluate the species’ conservation status. In the western United States, the forest carnivores in this assessment are limited to boreal forest ecosystems. These forests are characterized by extensive landscapes with a component of structurally complex, mesic coniferous stands that are characteristic of late stages of forest development. The center of the distrbution of this forest type, and of forest carnivores, is the vast boreal forest of Canada and Alaska. In the western conterminous 48 states, the distribution of boreal forest is less continuous and more isolated so that forest carnivores and their habitats are more fragmented at the southern limits of their ranges. -
Sierra Nevada Red Fox (Vulpes Vulpes Necator): a Conservation Assessment
Sierra Nevada Red Fox (Vulpes vulpes necator): A Conservation Assessment John D. Perrine * Environmental Science, Policy and Management Department and Museum of Vertebrate Zoology University of California, Berkeley Lori A. Campbell** USDA Forest Service Pacific Southwest Research Station Sierra Nevada Research Center Davis, California Gregory A. Green Tetra Tech EC Bothell, Washington Current address and contact information: *Primary Author: J. Perrine, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401 [email protected] **L. Campbell, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616 Perrine, Campbell and Green R5-FR-010 August 2010 NOTES IN PROOF • Genetic analyses by B. Sacks and others 2010 (Conservation Genetics 11:1523-1539) indicate that the Sacramento Valley red fox population is native to California and is closely related to the Sierra Nevada red fox. They designated the Sacramento Valley red fox as a new subspecies, V. v. patwin. • In August 2010, as this document was going to press, biologists on the Humboldt-Toiyabe National Forest detected a red fox at an automatic camera station near the Sonora Pass along the border of Tuolomne and Mono Counties. Preliminary genetic analyses conducted at UC Davis indicate that the fox was a Sierra Nevada red fox. Further surveys and analyses are planned. • The California Department of Fish and Game Region 1 Timber Harvest Program has established a Sierra Nevada red fox information portal, where many management-relevant documents can be downloaded as PDFs. See: https://r1.dfg.ca.gov/Portal/SierraNevadaRedFox/tabid/618/Default.aspx Sierra Nevada Red Fox Conservation Assessment EXECUTIVE SUMMARY This conservation assessment provides a science-based, comprehensive assessment of the status of the Sierra Nevada red fox (Vulpes vulpes necator) and its habitat. -
Climate Change Predicted to Shift Wolverine Distributions, Connectivity, and Dispersal Corridors
Ecological Applications, 21(8), 2011, pp. 2882–2897 Ó 2011 by the Ecological Society of America Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors 1,5 1 1 2 3 KEVIN S. MCKELVEY, JEFFREY P. COPELAND, MICHAEL K. SCHWARTZ, JEREMY S. LITTELL, KEITH B. AUBRY, 1 4 2 2 JOHN R. SQUIRES, SEAN A. PARKS, MARKETA M. ELSNER, AND GUILLAUME S. MAUGER 1USDA Forest Service, Rocky Mountain Research Station, 800 East Beckwith, Missoula, Montana 59801 USA 2University of Washington Climate Impacts Group, 3737 Brooklyn Avenue NE, Seattle, Washington 98105 USA 3USDA Forest Service, Pacific Northwest Research Station, 3625 93rd Avenue SW, Olympia, Washington 98512 USA 4USDA Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute, 790 East Beckwith, Missoula, Montana 59801 USA Abstract. Boreal species sensitive to the timing and duration of snow cover are particularly vulnerable to global climate change. Recent work has shown a link between wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the approximate end of the wolverine’s reproductive denning period. We modeled the distribution of snow cover within the Columbia, Upper Missouri, and Upper Colorado River Basins using a downscaled ensemble climate model. The ensemble model was based on the arithmetic mean of 10 global climate models (GCMs) that best fit historical climate trends and patterns within these three basins. Snow cover was estimated from resulting downscaled temperature and precipitation patterns using a hydrologic model. We bracketed our ensemble model predictions by analyzing warm (miroc 3.2) and cool (pcm1) downscaled GCMs. Because Moderate-Resolution Imaging Spectroradiometer (MODIS)-based snow cover relationships were analyzed at much finer grain than downscaled GCM output, we conducted a second analysis based on MODIS-based snow cover that persisted through 29 May, simulating the onset of spring two weeks earlier in the year. -
OREGON FURBEARER TRAPPING and HUNTING REGULATIONS
OREGON FURBEARER TRAPPING and HUNTING REGULATIONS July 1, 2020 through June 30, 2022 Please Note: Major changes are underlined throughout this synopsis. License Requirements Trapper Education Requirement By action of the 1985 Oregon Legislature, all trappers born after June 30, Juveniles younger than 12 years of age are not required to purchase a 1968, and all first-time Oregon trappers of any age are required to license, except to hunt or trap bobcat and river otter. However, they must complete an approved trapper education course. register to receive a brand number through the Salem ODFW office. To trap bobcat or river otter, juveniles must complete the trapper education The study guide may be completed at home. Testing will take place at course. Juveniles 17 and younger must have completed hunter education Oregon Department of Fish and Wildlife (ODFW) offices throughout the to obtain a furtaker’s license. state. A furtaker’s license will be issued by the Salem ODFW Headquarters office after the test has been successfully completed and Landowners must obtain either a furtaker’s license, a hunting license for mailed to Salem headquarters, and the license application with payment furbearers, or a free license to take furbearers on land they own and on has been received. Course materials are available by writing or which they reside. To receive the free license and brand number, the telephoning Oregon Department of Fish and Wildlife, I&E Division, 4034 landowner must obtain from the Salem ODFW Headquarters office, a Fairview Industrial Drive SE, Salem, OR 97302, (800) 720-6339 x76002. receipt of registration for the location of such land prior to hunting or trapping furbearing mammals on that land. -
View the Klamath Summary Report
SPECIAL SUPPLEMENT — KLAMATH BASIN GENERAL STREAM ADJUDICATION From the top of a fault formed ridge overlooking the expansive Upper Klamath Lake, the rest of the world seems to fall away. Unbroken blue skies and dry, thin air stretches the horizon impossibly far. To the east, parched buttes roll through deep, green farm-filled valleys. To the west, only the rugged, snow- capped Cascades can rein in the view. The feeling of freedom that defines the American West is alive in this place. Prepared by the Oregon Water Resources Department — October 1999 he Klamath Basin defies the soggy Northwest stereotype. The Cascade TMountains steal the moisture from eastward winds, transforming the damp, green Oregon known to most of the country. Away from the mountainsides, Lodge Pole and Ponderosa Pines supplant the water-dependent firs. The moss-covered logs and thick tangles of plants of the western forests are gone. In their place, reddish- black volcanic rocks speckle hillsides adorned with dusty sage. Sandy pumice soils are exposed to the wind and sun by the sparse ground cover. Everything seems to crack and crumble underfoot. Despite these desert-like conditions, an oasis of lakes, rivers, and marshes teams with wildlife. The remnants of a huge prehistoric lake once provided a cache of resources that allowed the Basin’s earliest human inhabitants to thrive in an otherwise formi- dable environment. Much time has passed and cultures have changed, but the reliance on these same resources has not. For more than 100 years, settlers, homesteaders, and their descendants have defied the desert by transforming vast lakes and marshes into farms and pasture–creating a heritage in the process. -
GAIT PATTERNS Pacer Diagonal Walker Bounder Galloper RABBITS
GAIT PATTERNS RODENTS Shows - 4 toes front, 5 toes rear, claws General Shape Normal Pace Gait: Galloper Pacer Diagonal Walker Indirect Register Gallopers: Squirrels, Ground Squirrels, Mice Rats, Bounder Chipmunks, Ground Hog, Marmot. Cross Pattern Tree dwellers show both pairs of feet parallel. Ground dwellers show dominant foot landing first. Squirrel Pacers: Porcupine, Muskrat, Beaver, Mountain Beaver Galloper Porcupine, Muskrat, Beaver - in deep mud show 5 toes in front (a hidden thumb). Mountain Beaver - always shoes 5 toes in front. RABBITS & HARES Shows - 4 toes front, 4 toes rear CAT FAMILY Shows - 4 toes front, 4 toes rear, claws (rarely) General Shape Normal Pace Gait: Galloper General Shape Normal Pace Gait: Diagonal Walker Rear Indirect Register Direct Register Elbow on the rear foot may or may not show. Front feet 1/2 larger than rear No claws (95% of time) - sometimes out during a hunt. Rabbit - rear feet 2 times larger than front feet Round Zero straddle Hare - rear feet 4-5 times larger than front. Zero pitch Front Rear The small heel pad helps to distinguish between a showshoe hare with no elbow showing and a Feral Cat - 4 toes equal size with elbow dog galloping Rabbit Mountain Lion - 4 toes equal size Cat Bobcat - inner toes larger, cleft in heel pad Lynx - outer toes larger DOG FAMILY Shows - 4 toes front, 4 toes rear, claws WEASEL FAMILY Shows - 5 toes front, 5 toes rear, claws General Shape Normal Pace Gait: Diagonal Walker General Shape Normal Pace Gait: Bounder Indirect Register Indirect Register Front feet 1/3 larger than rear. -
American Marten, Fisher, Lynx, and Wolverine: Survey Methods for Their Detection Agriculture
United States Department of American Marten, Fisher, Lynx, and Wolverine: Survey Methods for Their Detection Agriculture Forest Service Pacific Southwest Research Station Abstract Zielinski, William J.; Kucera, Thomas E., technical editors. 1995. American marten, fisher, lynx, and wolverine: survey methods for their detection. Gen. Tech. Rep. PSW-GTR-157. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 163 p. The status of the American marten (Martes americana), fisher (Martes pennanti), lynx (Lynx canadensis), and wolverine (Gulo gulo) is of increasing concern to managers and conservationists in much of the western United States. Because these species are protected throughout much of their range in the west, information on population status and trends is unavailable from trapping records. This report describes methods to detect the four species using either remote photography, track plates, or snow tracking. A strategy for systematic sampling and advice on the number of devices used, their deployment, and the minimum sampling duration for each sampling unit are provided. A method for the disposition of survey data is recommended such that the collective results of multiple surveys can describe regional distribution patterns over time. The report describes survey methods for detection only but also provides some considerations for their use to monitor population change. Retrieval Terms: furbearers, forest carnivores, survey methods, monitoring, inventory, western United States Technical Editors William J. Zielinski is research wildlife biologist with the Station's TimberlWildlife Research Unit, Redwood Sciences Laboratory, 1700 Bayview Drive, Arcata, CA 95521; and an Associate Faculty, Wildlife Department, Humboldt State University, Arcata, CA 95521. Thomas E. -
RECORD of PLAN CONFORMANCE and CATEGORICAL EXCLUSION (CX) DETERMINATION Bureau of Land Management (BLM)
RECORD OF PLAN CONFORMANCE AND CATEGORICAL EXCLUSION (CX) DETERMINATION Bureau of Land Management (BLM) CX Log #: OR-014-CX-05-24 Lease or Serial #: N/A Project Name: _Wood River Channel Maintenance___________________________________________ Location: ___Wood River Wetland_________________________________ County: Klamath County BLM Office: Lakeview District, Klamath Falls Resource Area Phone #: 541-883-6916 Applicant: ____________________________ Address: _______________________________ Description of the Proposed Action: The BLM plans to fill two short canals that were formed in the 1960’s and 1970’s when material was excavated from the wetland to construct a levee (see Attachment 1, Wood River channel maintenance location map). These canals created open water connections between the Wood River and Agency Lake. In 2000 BLM placed rock weirs across these channels as a component of the river restoration project below Dike Bridge (see Attachment 2, Existing Topography Over 2002 Aerial Photo and Attachment 3, Grading Plans). The mouth of the Wood River was relocated to a historic channel, lengthening the river by about ¾ mile. The purpose of the river restoration project is to improve habitat and water quality for fish and wildlife by restoring hydrologic function in the Wood River Delta. The placement of rock weirs in the east and west canals has limited boat access except when the lake is very full. This proposed project is designed to fill the canals, located approximately 150 feet downstream (south) of the Wood River bridge on the entrance road to Wood River Wetland. The purpose is to maintain the channel plugs and stop the flow of the Wood River from entering these channels. -
Wood River Channel Restoration and Recreation Improvements Final EA
Wood River Channel Restoration and Recreation Improvements EA #OR-014-08-10 PROJECT TITLE/TYPE: Wood River Wetland Restoration and Recreation Improvements PROJECT LOCATION: BLM Wood River Wetland and delta (See Project Location Map 1 in Appendix C.) The restoration and recreation improvements would be along the lower Wood River located approximately 10 miles west of Chiloquin, Oregon. The legal locations of the proposed actions are T34S, R 7.5 E Sections 25 (channel narrowing and deepening and floodplain restoration) and 36 (secondary channel outlet). BLM OFFICE: Klamath Falls Resource Area, Lakeview District CONFORMANCE WITH APPLICABLE LAND USE PLANS This Environmental Assessment (EA) is tiered to the Final Environmental Impact Statement for the Revision of the Resource Management Plans of the Western Oregon Bureau of Land Management (2008), including the Klamath Falls Resource Area. The analysis in the FEIS incorporated the Upper Klamath Basin and Wood River RMP/EIS (1995). Since no changes in management direction were made for the Wood River wetland, this project is in conformance with management direction under the 2008 Record of Decision and Resource Management Plan (2008 ROD) • Vegetation Treatment on Bureau of Land Management (BLM) Lands in Thirteen Western States FEIS and ROD (1991) • Integrated Noxious Weed Control Program EA #OR-013-93-03 (1994) • Upper Klamath Basin and Wood River Wetland Record of Decision and Resource Management Plan, 1996 INTRODUCTION Major restoration of the floodplain, delta and river channel of the lower Wood River began in 1996. These efforts were guided by the goals and objectives outlined in the Upper Klamath Basin and Wood River Wetland Record of Decision and Resource Management Plan, 1996 (RMP). -
Life History and Monitoring of Upper Klamath- Agency Lakes Adfluvial Redband Trout
Life History and Monitoring of Upper Klamath- Agency Lakes Adfluvial Redband Trout William R. Tinniswood (Author) Michael Harrington (Editor) Klamath Watershed District Oregon Department of Fish and Wildlife 2015 Introduction Spawning surveys are the primary monitoring tool for monitoring bull trout and anadromous fish species in Oregon (Jacobs et al. 2009, Gallagher et al. 2007, Jacobsen et al. 2014,). Randomized redd counts are utilized to monitor steelhead escapement on coastal Oregon tributaries (Jacobsen et al. 2014). Numerous studies of disparate salmonid species have shown positive significant relationships between redd counts and estimates of escapement (Gallagher et al. 2007), redd counts are strongly correlated with adult escapements (Dunham et al. 2001) and bull trout redd counts can detect a 50% decline in the population over 10 years (Howell and Sankovich 2012). However, redd counts can have significant sources of bias and error (Dunham et al. 2001), 5 year trends in redd counts can be misleading (Howell and Sankovich 2012) and redd counts should be conducted by experienced surveyors (Howell and Sankovich 2012, Muhlfield et al. 2006). The primary sources of spawning survey error include (Dunham et al. 2001, Holocek and Walters 2007). 1) Inexperienced and/or surveyor variability 2) Index surveys 3) Species overlap (ie. brown trout, brook trout, and hatchery rainbow trout) 4) Redd identification a. Test redds, b. Double counting , c. Omitting redds, d. Counting redds caused by hydraulic scour e. sample size otherwise known as number of spawning surveys conducted or redd age f. Superimposition g, substrate type, coloration, and productivity h. flow i. visibility j. habitat complexity k.