Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth S Niveyro & A Salvo Neotropical Entomology ISSN 1519-566X Volume 43 Number 6 Neotrop Entomol (2014) 43:532-540 DOI 10.1007/s13744-014-0248-3 1 23 Your article is protected by copyright and all rights are held exclusively by Sociedade Entomológica do Brasil. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Neotrop Entomol (2014) 43:532–540 DOI 10.1007/s13744-014-0248-3 ECOLOGY, BEHAVIOR AND BIONOMICS Taxonomic and Functional Structure of Phytophagous Insect Communities Associated with Grain Amaranth 1 2 SNIVEYRO ,ASALVO 1Fac de Agronomía, Univ Nacional de La Pampa, Santa Rosa, La Pampa, Argentina 2Centro de Investigaciones Entomológicas de Córdoba, Instituto Multidisciplinario de Biología Vegetal, CONICET, Fac de Ciencias Exactas Físicas y Naturales, Univ Nacional de Córdoba, Córdoba, Argentina Keywords Abstract Amaranthus, herbivory, insect guilds, stem Amaranthus are worldwide attacked mainly by leaf chewers and sucker borer insects. Stem borers and leaf miners follow in importance, while minor Correspondence herbivores are leaf rollers, folders, and rasping-sucking insects. The her- SNiveyro,Fac de Agronomía, Univ Nacional de bivorous community observed on Amaranthus spp. in Argentina was La Pampa, Santa Rosa, La Pampa, Argentina; [email protected] consistent with the information reported worldwide both in guild compo- sition and order proportion. Amaranth plants had a higher number of Edited by Antônio R Panizzi – Embrapa/Trigo phytophagous species in their native rather than in its introduced range. Received 8 April 2014 and accepted Occurrence of insect guilds differed in space and time. The highest density 6 October 2014 of leaf chewers was observed shortly after the emergence of plants, while Published online: 13 November 2014 higher density of borer and sucker insects coincided with reproductive stages of the crop. The sucking guild was observed mainly at panicles, * Sociedade Entomológica do Brasil 2014 while the insects within the leaf chewer group were registered in both leaves (92.6%, n=746 adults) and inflorescences (7.4%). The borer guild was also recorded in stems and inflorescences; however, the density of larvae in stems was about four times as high as the density observed in panicles (n=137 larvae). Introduction crops are not able to grow (Brenner et al 2000,Johnson &Henderson2002). In the last decades, amaranth has received renewed Numerous herbivorous insects have been reported to interested as a food crop. This is largely due to the high affect the Amaranthus genus worldwide (El-Aydam & Bürki amounts of good quality proteins for human consumption 1997). Among them, species of leaf chewers and sucking contained in its grains (Downton 1973, Teutonico & Knorr insects are known to feed heavily on leaves and floral buds 1985). Its amino acid profile, and in particular the high (Bürki et al 1997,Olson&Wilson1990), whereas the stem levels of lysine, makes amaranth grains an attractive borer guild is mentioned as the prevalent group at global protein source, very similar to the recommended amino scale (Louw et al 1995). Leaf miners, leaf rollers, and leaf acid pattern required for human nutrition, as established folders are also mentioned as amaranth insect feeders. For by FAO and the World Health Organization (Becker et al the first group, species are usually reported in Amaranthus 1981,Pedersenet al 1990). Moreover, being a pseudo- wild plants rather than in crops (Stegmaier 1950,Spencer cereal, grains of amaranths lack gluten, thus being a 1973, Mujica & Berti 1997, Carrasco 1987), while little is suitable food for people with gluten intolerance (Zannini known about the species in the leaf roller and folder guilds et al 2012). But Amaranthus plants are not only recog- (Jena et al 2000, Waterhouse 1994). Although Amaranthus is nized for their nutritional features but also due to their a genus that is widely distributed around the world, most of ability to thrive in many environments and tolerate ad- the species (including those cultivated for grain purpose) versities such as low water regime (Liu & Stützel 2002), have originated in the Americas (Sauer 1950, 1967,Coons poor soils, and moderate salinity levels (Omami & 1982), while only a few of them are native to Europe, Asia, Hammes 2006), conditions on which other commercial and Africa (Sauer 1967, Robertson 1981, Costea et al 2001). Author's personal copy Phytophagous Insect Communities Associated with Grain Amaranth 533 For it being an introduced crop in many non-American coun- were selected randomly and the whole plants were tries, grain amaranth might experience a reduction of her- inspected. The insects observed were counted and collected bivorous insect richness in introduced ranges according to (at least one sample of each species) for later identification in the “enemy release hypothesis” (ERH) (Keane & Crawley the laboratory. The growing stage of the insects and the 2002). This would represent an advantage for its cultivation location where they were found in the plant were also in non-natural areas. However, comparative studies regard- registered. ing herbivore diversity, load, and herbivory damage on During the second year of the trial (summer 2008/2009), Amaranthus spp. in the Americas and elsewhere are not borer insect occurrence was recorded. For that, a total of available. In turn, few studies concerning phytophagous in- 500 plants were taken at random in two different stages of sects on grain amaranth has been published in South the plant coincident with stages R4 and R6, according a America (Ves Losada & Covas 1987, Guerrero et al 2000,de phenological scale (Mujica & Quillahuamán 1989). The stalks Oliveira et al 2012,Riquelmeet al 2013), which is considered and panicles of these plants were sectioned longitudinally, the original region of two cultivable species Amaranthus and active larvae were counted and preserved in 70% etha- cruentus and Amaranthus mantegazzianus (Sauer 1950, nol for identification. 1967). Therefore, the first aim of this study was to inventory and describe the community of phytophagous insects asso- Literature survey ciated to grain amaranth in Argentina, exploring the occur- rence of insect guilds along the phenological cycle of the A literature survey of phytophagous insects associated to crop. The second aim was to compare the Amaranthus Amaranthus spp. was carried out, including research articles, phytophagous insect fauna in American and non-American reviews, and catalogs mentioning insects on both wild and countries on the basis of a literature survey, focusing the cultivated amaranth plants. Only herbivorous insects that analysis on its taxonomic and guild structure. were reported as effectively feeding on plants were consid- ered, and they were grouped into different guilds mainly following Stork (1987). Material and Methods Field surveys Statistical analysis Field surveys of phytophagous insects were conducted in The chi-square test was performed to compare guild struc- crops of three amaranth species (Amaranthus cruentus cv. ture and abundance between phytophagous communities Don León, Amaranthus hypochondriacus cv. Artasa 9122, observed in the Americas and those recorded in other parts A. hypochondriacus San Antonio, A. hypochondriacus FK of the world. The same analysis was performed to compare 280-FH1, and A. mantegazzianus cv. Don Juan) sowed in herbivore communities in Argentina with the information the north of Santa Rosa, La Pampa, Argentina (36°37′S, recorded worldwide. In all cases, an alpha of 0.05 was used. 64°16′W), during two growing seasons (summer 2007– 2008 and 2008–2009). A field of 156 m2 was sowed with a space of 0.50 m between rows and a density of 3.5 kg of seeds per hectare. The plants did not receive any insecticide Results application and weeding was done manually. The essay was located in a livestock area characterized by grasslands, Seventy previous studies on herbivorous fauna associated to wheat, and alfalfa field crops. During two growing seasons, Amaranthus plants made in 33 countries (42 in America and the essay was performed in a field of 7 ha in which several 28 elsewhere) on the five continents reported 255 species of weeds were present, being Cynodon dactylon, Digitaria phytophagous insects. The guild of leaf chewer was the sanguinalis, Portulaca oleracea, Xanthium cavanillesii, largest and richest group worldwide (El-Aydam & Bürki Salsola kali,andConyza bonariensis the most abundant. 1997, Clarke-Harris et al 2004, Aragón-García et al 2011), Insect sampling was conducted shortly after the plant representing half of the total insect species recorded feeding emergence and through all the crop cycle. Five samples in on amaranth (Fig 1a). The remaining species were distributed the first year and seven in the second year were performed among sucking insects (28%), stem borer (9%), leaf miner during daytime (9:00 AM to 2:00 PM approximately), when (8%), and three minor guilds: rasping-sucking insects (3%), most of the herbivorous insects are active. On three occa- leaf folder, and leaf roller (1% each) (Fig 1a). Species in the sions in summer 2008, observations were made at night leaf chewer guild belonged to 21 families of insects, while the (9:00 PM to 10 PM) to sample phytophagous insect not leaf folder guild was just represented by two species in one observed during daytime.
Recommended publications
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • (Coleoptera) of Peru Miguel A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2-29-2012 Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru Miguel A. Monné Universidade Federal do Rio de Janeiro, [email protected] Eugenio H. Nearns University of New Mexico, [email protected] Sarah C. Carbonel Carril Universidad Nacional Mayor de San Marcos, Peru, [email protected] Ian P. Swift California State Collection of Arthropods, [email protected] Marcela L. Monné Universidade Federal do Rio de Janeiro, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Monné, Miguel A.; Nearns, Eugenio H.; Carbonel Carril, Sarah C.; Swift, Ian P.; and Monné, Marcela L., "Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru" (2012). Insecta Mundi. Paper 717. http://digitalcommons.unl.edu/insectamundi/717 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0213 Preliminary checklist of the Cerambycidae, Disteniidae, and Vesperidae (Coleoptera) of Peru Miguel A. Monné Museu Nacional Universidade Federal do Rio de Janeiro Quinta da Boa Vista São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil Eugenio H. Nearns Department of Biology Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131-0001, USA Sarah C. Carbonel Carril Departamento de Entomología Museo de Historia Natural Universidad Nacional Mayor de San Marcos Avenida Arenales 1256, Lima, Peru Ian P.
    [Show full text]
  • Coleoptera: Coccinellidae) in the Palearctic Region
    Oriental Insects ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/toin20 Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region Amir Biranvand, Oldřich Nedvěd, Romain Nattier, Elizaveta Nepaeva & Danny Haelewaters To cite this article: Amir Biranvand, Oldřich Nedvěd, Romain Nattier, Elizaveta Nepaeva & Danny Haelewaters (2021) Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region, Oriental Insects, 55:2, 293-304, DOI: 10.1080/00305316.2020.1763871 To link to this article: https://doi.org/10.1080/00305316.2020.1763871 Published online: 15 May 2020. Submit your article to this journal Article views: 87 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=toin20 ORIENTAL INSECTS 2021, VOL. 55, NO. 2, 293–304 https://doi.org/10.1080/00305316.2020.1763871 Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region Amir Biranvanda, Oldřich Nedvěd b,c, Romain Nattierd, Elizaveta Nepaevae and Danny Haelewaters b aYoung Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran; bFaculty of Science, University of South Bohemia, České Budějovice, Czech Republic; cBiology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic; dInstitut de Systématique, Evolution, Biodiversité, ISYEB, Muséum National d’Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France; eAltai State University, Barnaul, Russian Federation ABSTRACT ARTICLE HISTORY Hippodamia Chevrolat, 1836 currently comprises 19 species. Received 9 December 2019 Four species of Hippodamia are native to the Palearctic region: Accepted 29 April 2020 Hippodamia arctica (Schneider, 1792), H.
    [Show full text]
  • ROLE of COLOR and ODOR on the ATTRACTION of INSECT VISITORS to SPRING BLOOMING TRILLIUM a Thesis Presented to the Faculty Of
    ROLE OF COLOR AND ODOR ON THE ATTRACTION OF INSECT VISITORS TO SPRING BLOOMING TRILLIUM A thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirements for the degree of Master of Science in Biology. By Natasha Marie Shipman Director: Dr. Laura DeWald Professor of Biology Biology Department Committee Members: Dr. Beverly Collins, Biology Dr. Amy Boyd, Biology Summer 2011 ACKNOWLEDGEMENTS This study was supported by grants from the Southern Appalachian Botanical Society Earl Core Graduate Student Research Award and North Carolina Native Plant Society Tom and Bruce Shinn Grant. I thank Jay Kranyik, director of the Botanical Gardens at Asheville for allowing me to use this location as my study site. Many Thanks to Warren Wilson College undergraduate students Manday Monroe, Alison LaRocca and Laura Miess for their constant help with field work; Shaun Moore for his support and help with development of experimental flowers and field work; Dr. Paul Bartels for his support and expertise in PRIMER-E; Dr. David Alsop (Professor, retired, Department of Biology, Queens College, The City University of New York) for his expertise and ability to help identify insects collected; my adviser Dr. Laura DeWald for her continued encouragement, advise and support; the rest of my committee Dr. Amy Boyd and Dr. Beverly Collins for advise and support. TABLE OF CONTENTS Page List of Tables……………………………………………………………………. iv List of Figures…………………………………………………………………… v Abstract………………………………………………………………………….. vi Chapter 1: Introduction………………………………………………………..... 1 Chapter 2: Literature Review…………………………………………………... 3 Floral Cues and Insect Response…………………………………….. 3 Plant-Pollinator Interactions: Specializations - Generalizations Continuum……………................ 10 Trillium…………………………………………………………………… 14 Chapter 3: Manuscript………………………………………………………….
    [Show full text]
  • Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: a Physiological, Biochemical and Molecular View
    fpls-12-702841 July 22, 2021 Time: 10:8 # 1 REVIEW published: 21 July 2021 doi: 10.3389/fpls.2021.702841 Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View Cristhian Camilo Chávez-Arias, Gustavo Adolfo Ligarreto-Moreno, Augusto Ramírez-Godoy and Hermann Restrepo-Díaz* Edited by: Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Bogotá, Fabricio Eulalio Leite Carvalho, Colombia Corporacion Colombiana de Investigacion Agropecuaria (Agrosavia) – CI La Suiza, Colombia Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for Reviewed by: human and animal nutrition and also as biofuel. However, as a direct consequence of Shabir Hussain Wani, Sher-e-Kashmir University global climate change, increased abiotic and biotic stress events have been reported of Agricultural Sciences in different regions of the world, which have become a threat to world maize yields. and Technology, India Drought and heat are environmental stresses that influence the growth, development, Martina Spundova, Palacký University, Olomouc, Czechia and yield processes of maize crops. Plants have developed dynamic responses Ana Karla M. Lobo, at the physiological, biochemical, and molecular levels that allow them to escape, São Paulo State University, Brazil avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can *Correspondence: Hermann Restrepo-Díaz generate resistance or tolerance responses in plants that are associated with inducible [email protected] and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate Specialty section: This article was submitted to critical variations in plant-insect interactions.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Bibliografía Guía De Polinizadores GEF Montaña
    © RICARDO VARELA © GUILLERMO ARENAS BIBLIOGRAFÍA GUÍA DE BOLSILLO 2020 INSECTOS POLINIZADORES NATIVOS DE LA ZONA CENTRAL DE CHILE ÍNDICE CONTEXTO .......................................................................................................................................................3 Orden: Coleoptera .....................................................................................................................................................3 Astylus trifasciatus .................................................................................................................................................3 Epiclines gayi ...........................................................................................................................................................3 Orden: Diptera ............................................................................................................................................................3 Acrophthalmyda paulseni ...................................................................................................................................3 Allograpta hortensis ..............................................................................................................................................4 Allograpta pulchra .................................................................................................................................................4 Austroscaeva melanostoma ...............................................................................................................................4
    [Show full text]
  • Short-Term Effects of Habitat Fragmentation on the Abundance and Species Richness of Beetles in Experimental Alfalfa Microlandscapes
    BEETLES IN FRAGMENTED ALFALFA MICROLANDSCAPESRevista Chilena de Historia Natural547 77: 547-558, 2004 Short-term effects of habitat fragmentation on the abundance and species richness of beetles in experimental alfalfa microlandscapes Efectos a corto plazo de la fragmentación del hábitat sobre la abundancia y riqueza de especies de coleópteros en micropaisajes experimentales de alfalfa AUDREY A. GREZ1*, TANIA ZAVIEZO2 & SUSANA REYES1 1 Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Casilla 2 Correo 15, La Granja, Santiago, Chile 2 Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306 – 22, Santiago, Chile *Corresponding author: [email protected] ABSTRACT Habitat loss and fragmentation are considered as the main causes of biodiversity depression. Habitat loss implies a reduction of suitable habitat for organisms, and habitat fragmentation is a change in the spatial configuration of the landscape, with the remaining fragments resulting more or less isolated. Recent theory indicates that the effects of habitat loss are more important than those of habitat fragmentation, however there are few experimental studies evaluating both processes separately. To test the effects of habitat fragmentation per se on the abundance, species richness and diversity of epigeal coleopterans, 15 (30 x 30 m) alfalfa microlandscapes, distributed in three blocks, were created. On twelve of them, 84 % of the habitat was removed, leaving in each landscape four or 16 fragments separated by 2 or 6 m of bare ground. From December 2002 to April 2003, before and after fragmentation, coleopterans were sampled using pitfall traps. In total, 8,074 coleopterans of 75 species belonging to 16 families were captured.
    [Show full text]
  • Diversity of Insects Under the Effect of Bt Maize and Insecticides Diversidade De Insetos Sob a Influência Do Milho Bt E Inseticidas
    AGRICULTURAL ENTOMOLOGY / SCIENTIFIC ARTICLE DOI: 10.1590/1808-1657000062015 Diversity of insects under the effect of Bt maize and insecticides Diversidade de insetos sob a influência do milho Bt e inseticidas Marina Regina Frizzas1*, Charles Martins de Oliveira2, Celso Omoto3 ABSTRACT: The genetically modified maize to control RESUMO: O milho geneticamente modificado visando ao controle some caterpillars has been widely used in Brazil. The effect de lagartas tem sido amplamente utilizado no Brasil. Em estudo de of Bt maize and insecticides was evaluated on the diversity of campo realizado em Ponta Grossa (Paraná, Brasil), compararam-se, insects (species richness and abundance), based on the insect com base na diversidade (riqueza de espécies e abundância), os efeitos community, functional groups and species. This study was do milho Bt e do controle químico sobre a comunidade de insetos, conducted in genetically modified maize MON810, which grupos funcionais e espécies. A comunidade de insetos foi amostrada expresses the Cry1Ab protein from Bacillus thuringiensis Berliner, no milho geneticamente modificado MON810, que expressa a proteína and conventional maize with and without insecticide sprays Cry1Ab de Bacillus thuringiensis Berliner, e no milho convencional (lufenuron and lambda-cyhalothrin) under field conditions com e sem a aplicação de inseticidas (lufenuron e lambda-cialotrina). in Ponta Grossa (Paraná state, Brazil). Insect samplings were As amostragens foram realizadas por meio da coleta de insetos utili- performed by using pitfall trap, water tray trap and yellow sticky zando-se armadilha de queda, bandeja-d’água e cartão adesivo. Foram card. A total of 253,454 insects were collected, distributed coletados 253.454 insetos, distribuídos em nove ordens, 82 famílias among nine orders, 82 families and 241 species.
    [Show full text]
  • 61 International Symposium on Crop Protection
    ABSTRACTS 61st International Symposium on Crop Protection May 19, 2009 Gent Belgium HONORARY D. DEGHEELE (=), W. DEJONCKHEERE (=), CHAIRMEN A. GILLARD (=), R.H. KIPS (=), C. PELERENTS, J. POPPE, J. STRYCKERS (=) J. VAN DEN BRANDE (=), W. WELVAERT ORGANIZING W. STEURNBAUT (Chair), R. BULCKE, COMMITTEE P. DE CLERCQ, M. HÖFTE, M. MOENS, G. SMAGGHE, L. TIRRY P. SPANOGHE (Secretary-general), H. VAN BOST (Secretary) L. GOETEYN (Assistant-secretary) L. GOSSEYE (Assistant-secretary) ADVISORY A. CALUS, J. COOSEMANS, P. CORNELIS, COMMITTEE P. CREEMERS, B. DE CAUWER, W. DE COEN, R. DE VIS, B. GOBIN, E. PRINSEN, D. REHEUL, E. VAN BOCKSTAELE, Els VAN DAMME, J. VANDEN BROECK, G. VAN HUYLENBROECK, M.C. VAN LABEKE, W. VERSTRAETE Tel. no. + 32 9 264.60.09 (P. Spanoghe) Fax. no : + 32 9 264.62.49 E-mail : [email protected] Website: http://www.iscp.ugent.be II GENERAL PROGRAMME May, 18 15.00-18.00 REGISTRATION May, 19 08.00 REGISTRATION 09.30-11.00 PLENARY SESSION 11.00-13.00 ORAL SESSIONS 13.00-14.00 LUNCH 14.00-15.00 POSTER SESSION 15.00-17.20 ORAL SESSIONS 17.30 RECEPTION 19.30 BANQUET Het Pand Ghent University Onderbergen 1, 9000 Gent III THE SYMPOSIUM VENUE Blok Room Section Topic Floor (Building) No Session PS Plenary Session E first 1.002 SP Special Session on Drift A first 1.015 1 Application Technology A first 1.015 Insecticides 2 E first 1.012 Host Plant Resistance Agricultural Entomology 3 E first 1.015 Side-Effects 4 Herbology A ground 0.030 5 Nematology A second 2.097 Phytopathology and Integrated 6 E second 2.009 Control of Plant Diseases (1)
    [Show full text]
  • List of Other Pests of Interest
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 8 - Other interesting findings: -pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU -pests of interest for other crops identified during the study 1 Pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU Information was extracted from the datasheets prepared for the Alert list. Please refer to the datasheets for more information (e.g. on Distribution, full host range, etc). Pest (taxonomic group) Hosts/damage Alert List Aegorhinus superciliosus A. superciliosus is mentioned as the most important pest of Apple (Coleoptera: raspberry and blueberry in the South of Chile. It is also a pest on Vaccinium Curculionidae) currant, hazelnut, fruit crops, berries, gooseberries. Amyelois transitella A. transitella is a serious pest of some nut crops (e.g. almonds, Grapevine (Lepidoptera: Pyralidae) pistachios, walnut) Orange- mandarine Archips argyrospilus In the past, heavy damage in the USA and Canada, with serious Apple (Lepidoptera: Tortricidae) outbreaks mostly on Rosaceae (especially apple and pear with Orange- 40% fruit losses in some cases) mandarine Argyrotaenia sphaleropa This species also damage Diospyrus kaki and pear in Brazil Grapevine (Lepidoptera: Tortricidae) Orange- mandarine Vaccinium Carpophilus davidsoni Polyphagous. Belongs to most serious pests of stone fruit in South Grapevine (Coleoptera: Nitidulidae) Australia (peaches, nectarines and apricots).
    [Show full text]
  • Bacillus Thuringiensis Cry1ac Protein and The
    BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean [PC Code 006532] U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division September 2010 Bacillus thuringiensis Cry1Ac in MON 87701 Soybean Biopesticide Registration Action Document TABLE of CONTENTS I. OVERVIEW ............................................................................................................................................................ 3 A. EXECUTIVE SUMMARY .................................................................................................................................... 3 B. USE PROFILE ........................................................................................................................................................ 4 C. REGULATORY HISTORY .................................................................................................................................. 5 II. SCIENCE ASSESSMENT ......................................................................................................................................... 6 A. PRODUCT CHARACTERIZATION B. HUMAN HEALTH ASSESSMENT D. ENVIRONMENTAL ASSESSMENT ................................................................................................................. 15 E. INSECT RESISTANCE MANAGEMENT (IRM) ............................................................................................
    [Show full text]