Introduction to Percolation Theory

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Percolation Theory Introduction to Percolation Theory Introduction to Percolation Theory Revised Second Edition Dietrich Stauffer and Amnon Aharony This edition published in the Taylor & Francis e-Library, 2010. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk. UK Taylor & Francis Ltd, 1 Gunpowder Square, London EC4A 3DE. USA Taylor & Francis Inc, 325 Chestnut Street, 8th Floor, Philadelphia, PA 19106 1st edition copyright © Dietrich Stauffer 1985 2nd edition copyright © Dietrich Stauffer and Amnon Aharony 1991 Revised 2nd edition 1994 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photo- copying, recording or otherwise, without the prior permission of the copyright owner. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data is available Cover design by Amanda Barragry ISBN 0-203-21159-6 Master e-book ISBN ISBN 0-203-26914-4 (Adobe ebook Reader Format) ISBN 0 7484 0027 3 (Print Edition) Contents Preface to the Second Edition viii P reface to the First Edition ix 1 Introduction: Forest Fires, Fractal Oil Fields, and Diffusion 1 1.1 What is percolation? 1 1.2 Forest fires 4 1.3 Oil fields and fractals 8 1.4 Diffusion in disordered media 10 1.5 Coming attractions 12 Further reading 13 2 Cluster Numbers 15 2.1 The truth about percolation 15 2.2 Exact solution in one dimension 19 2.3 Small clusters and animals in d dimensions 23 2.4 Exact solution for the Bethe lattice 26 2.5 Towards a scaling solution for cluster numbers 35 2.6 Scaling assumptions for cluster numbers 42 2.7 Numerical tests 45 2.8 Cluster numbers away from p c 56 Further reading 59 3 Cluster Structure 60 3.1 Is the cluster perimeter a real perimeter? 60 3.2 Cluster radius and fractal dimension 62 3.3 Another view on scaling 67 3.4 The infinite cluster at the threshold 68 Further reading 73 4 Finite-size Scaling and the Renormalization Group 74 4.1 Finite-size scaling 74 4.2 Small cell renormalization 79 4.3 Scaling revisited 86 4.4 Large cell and Monte Carlo renormalization 88 vi Content 4.5 Connection to geometry 91 Further reading 92 5 Conductivity and Related Properties 93 5.1 Conductivity of random resistor networks 93 5.2 Internal structure of the infinite cluster 98 5.3 Multitude of fractal dimensions on the incipient infinite cluster 100 5.4 Multifractals 104 5.5 Fractal models 109 5.6 Renormalization group for internal cluster structure 113 5.7 Continuum percolation, Swiss-cheese models and broad distributions 114 5.8 Elastic networks 118 Further reading 120 6 Walks, Dynamics and Quantum Effects 122 6.1 Ants in the labyrinth 122 6.2 Probability distributions 130 6.3 Fractons and superlocalization 132 6.4 Hulls and external accessible perimeters 135 6.5 Diffusion fronts 140 6.6 Invasion percolation 143 Further reading 145 7 Application to Thermal Phase Transitions 147 7.1 Statistical physics and the Ising model 147 7.2 Dilute magnets at low temperatures 149 7.3 History of droplet descriptions for fluids 150 7.4 Droplet definition for the Ising model in zero field 152 7.5 The trouble with Kertész 153 7.6 Applications 154 7.7 Dilute magnets at finite temperatures 155 7.8 Spin glasses 158 Further reading 159 8 Summary 160 A Numerical Techniques 163 A.1 Analysis of exact data 163 A.2 Analysis of Monte Carlo data 164 Content vii A.3 Computerized cluster counting 166 Further reading 178 B Dimension-Dependent Approximations 179 B.1 Upper critical dimension 179 B.2 Flory approximation 180 B.3 !-Expansion 181 Further reading 182 Exercises 183 Index 190 Preface to the Second Edition This edition is enlarged not only by a second author, but also by additional material, needed because of the progress in research since the first edition. In addition to correction of errors, omission of topics which are no longer active and updating of references, the new edition puts more emphasis on fractals and on the relations between the fractal geometry of percolation clusters and their physical properties. It also puts more emphasis on the crossover (as function of length scale) between the critical behaviour at and near the percolation threshold and other types of behaviour, and on the presentation of the renormalization group as a working tool. Dimensions above three are no longer ignored. Most of the new material in this edition is contained in Chapters 5, 6 and 7, and in Appendix B. New concepts which are introduced, at least briefly, include distribution functions, fluctuations, multifractals, minimal (chemical) paths, continuum percolation, elastic networks, superlocalization, fractons, hulls and perimeters, diffusion fronts, growth, self-affine curves, invasion percolation and self-organized criticality. We also discuss the role played by percolation theory in describing Ising model droplets, leading to the very fast modern Monte Carlo simulation techniques in statistical physics. Many of the concepts listed here are not limited to percolation clusters. They arise in many modern branches of statistical physics and other disciplines which involve the interplay of geometry, statistics and physics. Examples include polymer science, aggregation, etc. Percolation theory is still the simplest context in which all these tools can be introduced and explained. Another new element in this edition is the set of exercises. Many of these were originally research problems, and their solutions are hidden in the ‘further reading’ lists or in references therein. However, any student who follows the text should be able to solve these exercises, and use them to test his or her ability to actively use the tools offered here in research. Obviously, this book still represents our biased view of percolation. One cannot do justice to all the topics which have appeared in the literature, and it is also beyond the scope of such an introductory text. Since this book is not a review monograph, we also avoided giving a full list of references. In many cases we have preferred to list a recent review or research article which contains many of the earlier references. In any case, the responsibility for these omissions, as well as for the remaining and new errors, rests fully with my coauthor. Joan Adler, Preben Alstrom, Etienne Guyon, Shlomo Havlin, Rudolf Hilfer, Ury Naftaly and Gene Stanley made comments on the first version which were helpful in improving the book. Dietrich Stauffer Amnon Aharony Tel Aviv, January 1991 Preface to the First Edition This book is an attempt to introduce the reader to a research field which is already more than forty years old but which has become very fashionable in the research publications of the last ten years. More than a hundred publications are printed each year where ‘percolation’ or similar words appear in the title. But in contrast to many other modern research fronts, percolation theory is a problem which is, in principle, easy to define. It is, however, not so easy to solve. Thus percolation theory gives the reader the opportunity to enter current research without having to hear many specialized courses or to read voluminous textbooks. Percolation theory has been taught to first year undergraduates and even younger students by this author and by others, but it has also been utilized in courses for more advanced students on disordered systems or on computer simulations. The present book tries to be useful for all these purposes. Since percolation is not, and in my opinion should not be, a standard subject for university examinations, it is addressed mainly to readers interested in research. But it is aimed at one who is just starting research in this field, not to readers who have already worked in percolation theory. These experts will doubtless notice my biased selection of material. The prerequisites are familiarity with computer programming (e.g. Fortran), integration and differentiation of functions of one variable, and probabilistic elements like averages or statistical independence. Therefore the book should be understandable to students in computer science, mathematics, chemistry or biology who might be interested in stretching a big computer to its limits by efficient programming, in simple applications of probability theory, in theories for the gelation of branched macromolecules, or in the spread of epidemics in an ensemble of living beings. But presumably the book will be read mostly by physics students since the methods by which it attacks the percolation problem are taken from the theory of phase transitions like ferromagnetic Curie points. For these we will mention throughout the book analogies between the geometrical aspects of percolation and the physical aspects of thermal phase transitions. Any modern textbook on Statistical Physics will give the background to understand these analogies, and students not interested in the analogies may simply ignore them. Some readers may be acquainted with the scaling theory of phase transitions developed during the last twenty years and honoured by the 1982 Nobel prize for Kenneth G.Wilson. They will notice that many aspects of percolation theory are simply borrowed from the physics of phase transitions, as will be mentioned in the text. On the other hand, a reader who has not yet learned scaling theory or renormalization group methods for general phase transitions, but who wants to know something about them, may use percolation theory as a starting point. In many respects percolation is the simplest not exactly solved phase transition and thus may serve as an introduction to the sometimes more difficult review articles or books on phase transitions and critical phenomena.
Recommended publications
  • Series Analysis of Randomly Diluted Nonlinear Networks with Negative Nonlinearity Exponent
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 9-1-1987 Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent Yigal Meir Raphael Blumenfeld A. Brooks Harris University of Pennsylvania, [email protected] Amnon Aharony Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Meir, Y., Blumenfeld, R., Harris, A., & Aharony, A. (1987). Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent. Physical Review B, 36 (7), 3950-3952. http://dx.doi.org/ 10.1103/PhysRevB.36.3950 At the time of publication, author A. Brooks Harris was affiliated withel T Aviv University, Tel Aviv, Israel. Currently, he is a faculty member in the Physics Department at the University of Pennsylvania. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/306 For more information, please contact [email protected]. Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent Abstract The behavior of randomly diluted networks of nonlinear resistors, for each of which the voltage-current relationship is |V|=r|I|α, where α is negative, is studied using low-concentration series expansions on d-dimensional hypercubic lattices. The average nonlinear resistance ⟨R⟩ between a pair of points on the same cluster, a distance r apart, scales as rζ(α)/ν, where ν is the correlation-length exponent for percolation, and we have estimated ζ(α) in the range −1≤α≤0 for 1≤d≤6. ζ(α) is discontinuous at α=0 but, for α<0, ζ(α) is shown to vary continuously from ζmax, which describes the scaling of the maximal self-avoiding-walk length (for α→0−), to ζBB, which describes the scaling of the backbone (at α=−1).
    [Show full text]
  • Vita and Publications ◊ December 23, 2004 ◊ 12
    BENOIT B. MANDELBROT VITA AND PUBLICATIONS ◊ DECEMBER 23, 2004 ◊ 12 RESEARCH PUBLICATIONS OTHER THAN BOOKS 1951 1 www AS & K FE4. M 1951. Adaptation d'un message sur la ligne de transmission, I & II. Comptes Rendus (Paris): 232, 1638-1640 & 2003-2005. 1952 2 M 1952. Sur la notion générale d'information et la durée intrinsèque d'une stratégie. Comptes Rendus (Paris): 234, 1346- 1348. 3 M 1952. Les démons de Maxwell. Comptes Rendus (Paris): 234, 1842-1844. 1953 4 M 1953t. Contribution à la théorie mathématique des jeux de communication (Ph.D. Thesis). Publications de l'Institut de Statistique de l'Université de Paris: 2, 1-124. 5 M 1953i. An informational theory of the statistical structure of language. Communication Theory, the Second London Symposium. Edited by Willis Jackson. London: Butterworth; New York: Academic, 486-504. 1954 6 M 1954w. Structure formelle des textes et communication (deux études). Word: 10, 1-27. • Corrections: Word: 11, 1955, 424. • English translation by Anthony G. Oettinger: The formal structure of texts and communication (two studies): Cambridge, MA, Harvard Computation Laboratory, 1955. • Czech translation: Komunikace a formalni struktura textu. Teorie informace a jazykoveda (=Information theory and linguistics), an anthology edited by Lubomir Dolozel. Prague: Press of the Czechoslovak Academy of Sciences, 1964, 130-150. • Excerpt: Le Langage, anthologie dirigée par Robert Pagès. Paris: Hachette, 1959, 55-57. • Summary: Information sans interprétation dans la description des langues réelles. Synthèse: 11, 1959, 160-161. 7 M 1954. Simple games of strategy occurring in communication through natural languages. Transactions of the IRE Professional Group on Information Theory: 3, 124-137.
    [Show full text]
  • Arxiv:2108.09998V1 [Cond-Mat.Mtrl-Sci] 23 Aug 2021
    Theory of Chirality Induced Spin Selectivity: Progress and Challenges Ferdinand Evers,1, ∗ Amnon Aharony,2 Nir Bar-Gill,3 Ora Entin-Wohlman,4 Per Hedeg˚ard,5 Oded Hod,6 Pavel Jelinek,7 Grzegorz Kamieniarz,8 Mikhail Lemeshko,9 Karen Michaeli,10 Vladimiro Mujica,11 Ron Naaman,12 Yossi Paltiel,3 Sivan Refaely-Abramson,13 Oren Tal,12 Jos Thijssen,14 Michael Thoss,15 Jan M. van Ruitenbeek,16 Latha Venkataraman,17 David H. Waldeck,18 Binghai Yan,10 and Leeor Kronik13, y 1Institute of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany 2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel 3Department of Applied Physics, Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel 4Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel 5Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark 6Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel 7Nanosurf Lab, Institute of Physics of the Czech Academy of Sciences, Prague 6, CZ 162 00, Czech Republic 8Department of Physics, Adam Mickiewicz University, Pozna´n61-614, Poland 9IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria 10Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovoth 7610001, Israel 11School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA 12Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovoth 76100, Israel 13Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel 143 Kavli Institute of Nanoscience Delft, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands 15Institute of Physics, University of Freiburg, Hermann-Herder-Str.
    [Show full text]
  • Phase Diagrams for the Randomly Diluted Resistor Network and XY Model
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 10-1-1989 Phase Diagrams for the Randomly Diluted Resistor Network and XY Model A. Brooks Harris University of Pennsylvania, [email protected] Amnon Aharony Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Harris, A., & Aharony, A. (1989). Phase Diagrams for the Randomly Diluted Resistor Network and XY Model. Physical Review B, 40 (10), 7230-7238. http://dx.doi.org/10.1103/PhysRevB.40.7230 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/300 For more information, please contact [email protected]. Phase Diagrams for the Randomly Diluted Resistor Network and XY Model Abstract The randomly diluted resistor network and XY model at low temperature T are studied near the d-dimensional percolation threshold using the ɛ expansion, where ɛ=6-d. The series expansion of the inverse susceptibility in powers of T for the XY model is identical to that of the appropriate resistive −1 inverse susceptibility in powers of σ0 , where σ0 is the conductance of a bond. However, the temperature-dependent critical concentration pc(T) for the XY model has no analog in the resistor network, where pc clearly does not depend on σ0. This distinction arises from a rather subtle difference between the Fourier component representation of the Gaussian model for the resistor network and that of the bounded potential energy associated with the XY model. We introduce a family of models which provides a smooth interpolation between these two models and show that the phase boundary for the XY model satisfies certain simple self-consistency checks involving other susceptibilities.
    [Show full text]
  • (PBC) Steering Advisory Committee on Quantum Science And
    Planning and Budgeting Committee (PBC) Steering Advisory Committee on Quantum Science and Technology Final Report Presented to the Planning and Budgeting Committee General Assembly February 2018 1 | PAGE Preamble, Prof. Uri Sivan, Committee Chairman My heartfelt thanks to the committee members for their time and efforts invested in constructing the National Academic Quantum Science and Technology (QST) Program. Their expertise and the depth and scope of discussions have brought to the results presented below. My thanks to the Planning and Budgeting Committee (PBC) members, particularly to the Chairwomen, Prof. Zilbershats, for her continuous trust in the committee and its objective. Special thanks to the PBC representatives accompanying the Committee: Dr. Liat Maoz, Ms. Nina Ostrozhko and Mr. Amir Gat for their extraordinary devotion and contributions throughout. “The second quantum revolution”, which drove the PBC to declare QST as a priority field in its five- years plan, is underway. Testament to this are the expansive national and multinational programs announced by most developed countries and extensive commercial investments. The proposed program aims to lay down the academic foundation necessary for Israel to join this revolution. It leans upon the existing excellence and provides a roadmap of the steps necessary to significantly expand the scope of activity, improve research capacities and train a skilled workforce to set the revolution in motion in academia, industry and security sector. An expansive academic program is critical to position Israel at the forefront of global research and development, but realizing its national potential also demands partnering with additional entities experienced in laying down the infrastructure necessary to develop the industry and security needs.
    [Show full text]
  • Quantum Percolation in Magnetic Fields
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 3-3-1986 Quantum Percolation in Magnetic Fields Yigal Meir Amnon Aharony A. Brooks Harris University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Quantum Physics Commons Recommended Citation Meir, Y., Aharony, A., & Harris, A. (1986). Quantum Percolation in Magnetic Fields. Physical Review Letters, 56 (9), 976-979. http://dx.doi.org/10.1103/PhysRevLett.56.976 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/311 For more information, please contact [email protected]. Quantum Percolation in Magnetic Fields Abstract A generalized average inverse participation ratio, for the one-electron wave functions of a dilute tight- binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields. Extended vwa e functions appear above a quantum threshold bond concentration, pq. This threshold decreases at small magnetic fields, and shows a periodic dependence on the magnetic flux through a basic plaquette, with period φ0=ℏc/e. Extended states appear and disappear periodically even at d=2. Disciplines Physics | Quantum Physics This journal article is available at ScholarlyCommons: https://repository.upenn.edu/physics_papers/311 Vm, UME 56, NUMsER9 PHYSICAL REVIEW LETTERS 3 MARcH 1986 Quantum Percolation in Magnetic Fields Yigal Meir and Amnon Aharony School of Physics and Astronomy, Tel A vi v University, Tel A vi v 699?8, Israel A. Brooks Harris Department of Physics, University ofPennsylvania, Philadelphia, Pennsylvania, I 9104 (Received 8 August 1985) A generalized average inverse participation ratio, for the one-electron wave functions of a dilute tight-binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields.
    [Show full text]
  • Fractal Dimensions and Corrections to Scaling for Critical Potts Clusters
    Fractals, Vol. 0, No. 0 (0000) c❢ World Scientific Publishing Company FRACTAL DIMENSIONS AND CORRECTIONS TO SCALING FOR CRITICAL POTTS CLUSTERS AMNON AHARONY School of Physics and Astronomy Raymond and Beverly Sackler Faculty of exact Sciences Tel Aviv University, Tel Aviv 69978, Israel JOONAS ASIKAINEN Laboratory of Physics, Helsinki University of Technology P. O. Box 1100, FIN-02150 HUT, Espoo, Finland Abstract Renormalization group and Coulomb gas mappings are used to derive theoretical predictions for the corrections to the exactly known asymptotic fractal masses of the hull, external perimeter, singly connected bonds and total mass of the Fortuin- Kasteleyn clusters for two-dimensional q-state Potts models at criticality. For q = 4 these include exact logarithmic (as well as log log) corrections. arXiv:cond-mat/0206367v2 [cond-mat.stat-mech] 21 Jun 2002 1. INTRODUCTION q-state Potts models, with interaction Jδ (σ = 1, 2, ..., q) for the nearest neighbor − σiσj i,j (nn) sites i, j, have played an important role in condensed matter physics1. Here we study geometrical aspects of the critical Potts clusters, in two dimensions. For an arbitrary con- figuration of Potts states, one creates bonds between neighboring sites which have the same 1 2 Fractal Dimensions for Critical Potts Clusters state, σ = σ , with a probability p = 1 exp ( J/kT ). No bonds are created between sites i j − − with σi = σj. Here we study the fractal geometry at Tc of the clusters, made of sites con- 6 2 nected by bonds . Specifically, we measure the fractal dimensions DM , DH , DEP , and DSC describing the scaling of the cluster’s mass, hull, external accessible perimeter3 and singly connected bonds4, respectively, with its radius of gyration R.
    [Show full text]
  • Mary Elizabeth Parks Cv
    Mary Elizabeth Parks cv http://departments.colgate.edu/physics/faculty/Parks%20cv.htm Mary Elizabeth Parks Education: Sept. 1989- University of California, Berkeley August 1995 Ph.D. in Physics, December 1995 Thesis: High Frequency Electrodynamics of the Cuprate Superconductors in the Vortex State M. A. in Physics, May 1991 Sept. Princeton University 1984-June A. B. in Physics, magna cum laude, June 1988 1988 Research and Teaching Positions: July Assistant Professor, Colgate University, Department of Physics 1997-present Research: terahertz spectroscopy of condensed matter systems Teaching: courses for the physics concentration and for non-majors Sept. Post-doctoral Associate, M. I. T., Department of Physics 1995-June supervisor: M. Kastner 1997 Effect of carrier doping on systems with magnetic order June Graduate Student Researcher, U. C. Berkeley, Department of Physics 1990-August supervisor: J. Orenstein 1995 Coherent time-domain spectroscopy of high-Tc superconductors in high magnetic fields August Graduate Student Instructor, U.C. Berkeley, Department of Physics 1994-Dec. Intensive section of introductory electricity and magnetism for minorities in 1994 engineering August Graduate Student Instructor, U.C. Berkeley, Department of Physics 1989-May Courses: Introduction to modern physics, Honors introductory mechanics 1990 August Chemistry Teacher, St. Columbkille High School, Brighton, MA 1988-June Three sections of chemistry with laboratories 1989 1 of 10 6/4/09 1:50 PM Mary Elizabeth Parks cv http://departments.colgate.edu/physics/faculty/Parks%20cv.htm
    [Show full text]
  • Symposium on Quantum Computing and Quantum Optics II
    Symposium on Quantum Computing and Quantum Optics II May 24-26, Zhejiang University (211 Shaoke Building, Yuquan Campus), Hangzhou, China May 24, Friday Morning Session I, Chairman: Joe Eberly 8:00-8:05 Shi-Yao Zhu, Opening remarks Zhejiang University, China 8:05-8:50 Marlan O. Scully On Bose condensates, squeezed Texas A&M University, USA light and black holes 8:50-9:20 Hongxing Xu Plasmonic Nanocavity Wuhan University, China 9:20-9:50 M. Suhail Zubairy Erasing memory-Protecting Texas A&M University, USA quantum coherence and entanglement 9:50-10:20 Coffee Break, Taking photos Session II, Chairman: Marlan O. Scully 10:20-10:50 Joe Eberly Single-Photon Interference, University of Rochester, Duality, Entanglement, and USA Delayed Choice Experiments 10:50-11:20 Xiaobo Zhu Genuine 12-Qubit Entanglement University of Science and on a Superconducting Quantum Technology, China Processor 11:20-11:50 Barry Garraway Dressed-atom potentials for University of Sussex, UK matter-wave interference 11:50-12:20 Anatoly Svidzinsky Excitation of cavity modes by a Texas A&M University, USA moving atom through virtual transitions May 24, Friday Afternoon Session I, Chairman: Hongxing Xu 13:30-14:00 Peter Nordlander Quantum Plasmonics and Rice University, USA Applications in Light Harvesting 14:00-14:30 Kohzo Hakuta Nanofiber Cavity-QED for University of Electro- Manipulating Single Photons Communications, Japan 14:30-15:00 Ed Fry Research Capabilities via an Texas A&M University, Ultrahigh Diffuse Reflecting Material USA 15:00-15:30 Coffee Break, Poster Session
    [Show full text]
  • Low Dimensional Quantum Magnetism in the Copper Oxides
    Le NO9900025 Low Dimensional Quantum Magnetism in the Copper Oxides Ora Entin-Wohlman and Amnon Aharony School of Physics and Astronomy, Tel Aviv University, Israel The magnetism of lamellar copper oxides, which are the parent mate- rials of high temperature superconductors, is dominated by the spin 1/2 Cu+2 ions on the CuC>2 planes. These planes have Cu ions on the vertices and O ions on the bonds of a square lattice, and their magnetic behavior at high temperature is described well by the planar quantum Heisenberg an- tiferromagnetic (AFM) model, which has long range order only at T=0. In fact they have three dimensional AFM order due to weak spin anisotropies and interplane couplings. Starting from a Hubbard model with spin orbit and Coulomb exchange couplings, we derive an effective magnetic Hamil- tonian which contains these anisotropies and couplings. An analysis of the zero point quantum spin wave energies generates additional four-fold sym- metry terms and delicate higher order interplane interactions, which help select a ground state among states which would otherwise be degenerate due to frustration. Having generated the full effective magnetic Hamiltonian, the results are used to identify the magnetic structures and competitions among them, leading to phase diagrams in parameter space. These are also used to discuss the critical phenomena which occur near various possible transitions. Specific attention will be devoted to the structures of tetrago- nal Sr2CuO2Cl2, Nd2CuC>4 and P^CuO^ In the former, frustration among layers is lifted by pseudodipolar interactions and by quantum zero point en- ergies. In the latter two, the rare earth also participates in the magnetism.
    [Show full text]
  • Frontiers of Quantum and Mesoscopic Thermodynamics (Online Conference) 18 - 24 July 2021, Prague, Czech Republic
    Frontiers of Quantum and Mesoscopic Thermodynamics (online conference) 18 - 24 July 2021, Prague, Czech Republic Under the auspicies of Prof. RNDr. Eva Zažímalová, CSc. President of the Czech Academy of Sciences Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Czech Academy of Sciences • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • College of Engineering and Science, University of Detroit Mercy, USA • Department of Physics, Texas A&M University, USA • Quantum Optics Lab at the BRIC, Baylor University, USA • Institut de Physique Théorique, CEA/CNRS Saclay, France Topics • Non-equilibrium quantum phenomena • Dissipation, dephasing and noise • Quantum statistical physics and thermodynamics • Foundations of quantum physics • Quantum measurement, entanglement and coherence • Many body physics, quantum field theory • Light matter interactions, quantum optics • Physics of quantum information and computing • Topological states of quantum matter, quantum phase transitions • Macroscopic quantum behavior • Atomic physics, cold atoms and molecules • Mesoscopic, nano-electromechanical and nano-optical systemss • Molecular motors, quantum heat engines • Biological systems • Cosmology, gravitation and astrophysics Scientific Committee Chair: Václav Špickaˇ (Institute of Physics, Czech Academy of Sciences, Prague) Co-Chair: Theo M. Nieuwenhuizen (University of Amsterdam) Raymond Dean Astumian (University
    [Show full text]
  • Résumé: Raphael Blumenfeld
    R´esum´e: Raphael Blumenfeld Nationality: UK, Israel Address: (1) Earth Science and Engineering, Imperial College London, London SW7 2AZ (2) Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK Tel: +44 (0)1223 337-226, Fax: +44 (0)1223 337-000 Email: [email protected] ; [email protected] Homepage: http://rafi.blumenfeld.co.uk Education 1989 Ph.D., Physics - Tel Aviv University. Random systems - Nonlinear conductivity and distributions, Supervisors: Profs. Amnon Aharony and David J. Bergman, Summa cum Laude. 1986 M.Sc., Physics - Tel Aviv University. Nonlinear random resistor networks, topological problems and fluctuations, Supervisor: Prof. Amnon Aharony, Summa cum Laude. 1984 B.Sc., Physics - Tel Aviv University, Distinction (equivalent to a UK high First). Languages English Speaking - excellent; Reading - excellent; Writing - excellent Hebrew Speaking - excellent; Reading - excellent; Writing - excellent Romanian Speaking - excellent; Reading - excellent; Writing - satisfactory Appointments 2014-present Distinguished Professor, College of Science, National University of Defense Technology, Changsha, Hu- nan, China 2013-present Editor, Granular Matter Journal, Springer 2012-present Bye-Fellow, Gonville and Caius College, Cambridge, UK 2010-2012 Senior Visiting Fellow, Inst. of Shock Physics, Imperial College London, UK 2009-2012 College Lecturer, Gonville and Caius College, Cambridge, UK 2005-present Research Fellow, Earth Science and Engineering, Imperial College London, UK 1997- Long-Term Associate member, Cavendish
    [Show full text]