Israel Physical Society 1990 Annual Meeting Program %

Total Page:16

File Type:pdf, Size:1020Kb

Israel Physical Society 1990 Annual Meeting Program % It The Hebrew University of Jerusalem Racah Institute of Physics ; \| s- OOC'J /. Israel Physical Society 1990 Annual Meeting Program % Bulletin of the Israel Physical Society Vol. 36, 1990 I The Hebrew University of Jerusalem Racah Institute of Physics INiS OOCUM TRN Israel Physical Society 1990 Annual Meeting Bulletin of the Israel Physical Society Vol. 36, 1990 Israel Physical Society-Annual Conference The Hebrew University, Jerusalem, May 6,7-1990 Scientific Programme Sunday, May 6 08:30 - 09:30 Registration (Wise Auditorium Lobby). 09:30 -10:00 Opening session (Wise Auditorium). 10:00-11:00 Plenary Lecture: "Geometry in Modern Theoretical Physics", Orlando Alvarez, University of California, Berkeley. 11:00 -11:30 Coffee break 11:30-12:30 Plenary Lecture: "Novel Magnetic Phenomena and High Tc Superconductivity", Robert.J. Birgenau, MIT. 12:30 -13:30 Lunch break 13:45-14:20 IPS Meeting-election of the new president of IPS {Wise Auditorium). 14:30 -18:30 Section Meetings (two sessions with coffee break between 16:00-16:30): Statistical Physics: Chairmen: A. Aharony (Tel-Aviv Univ.) and S. Fishman (Technion). Invited lecturers: A.B. Harris (Univ. of Pennsylvania), D. Kandel (Weizmann Inst.), Y. Stavans (Weizmann Inst), I. Kanter (Bar-Han Univ.) and D. Hansel (Hebrew Univ.). (Canada Auditorium) Astrophysics and Cosmology: Chairman: T. Piran (Hebrew Univ.). Invited Lecturers: D. Lynden-Bell (Cambridge Institute of Astronomy), D. Portnoy and S. Pistiner (Technion) and A. Wandel. (Weizmann Inst.). (Sprinzak Bldg. 115) Particles and Fields: Chairman: Y. Frishman (Weizmann Inst.). Invited Lecturers: S. Elitzur (Hebrew Univ.), M. Karliner (Tel-Aviv Univ.), and S. Solomon (Hebrew Univ.). (Kaplun Bldg.) Sub-Micron and Low Dimensionality Physics: Chairmen: I. Freund (Bar-Han Univ.) and Z. Ovadyahu (Hebrew Univ.). Invited Lecturers: M.A. Kastner (MIT), Y. Avishai (Ben-Gurion Univ.), M. Azbel (Tel-Aviv Univ.), M.' Kaveh (Bar-Man Univ.). (Kaplan B Hall) Nuclear Physics: Chairmen: J. Burde and I. Unna (Hebrew Univ.). Invited Lecturers: J. Alster (Tel-Aviv Univ.), C. Broude (Weizmann Inst.), A. Wolf (Negev Research Center), S. Mordechai (Ben-Gurion Univ.) and O. Meirav (TRIUMF). {Sprinzak 117) Lasers, Plasma Physics, Optics and Spectroscopy: Chairmen: B.S. Fraenkel and L. Friedland (Hebrew Univ.) Invited Lecturers: B. Shore (Lawrence Livermore National Laboratory), S. Yatsiv, B. Meerson (Hebrew Univ.), A. Fruchtman (Weizmann Inst.) and Z. Rosenwaks (Ben-Gurion Univ.). {Levin 8) Monday, May 7 09:00 -12:30 Section Meetings and Workshops (two sessions and coffee break between 10:30 -11:00): Computational Physics: Chairperson: J. Adler (Technion). Invited Lecturers: D. Rapaport (Bar-Han Univ.), S. Solomon (Hebrew Univ.), S. Eckstein and G. Shaviv (Technion). (Levy Bldg.) High Tc Superconductors: Chairmen: I. Felner (Hebrew Univ.) and M. Weger (Hebrew Univ.). Invited Lecturers: B. Horowitz (Ben-Gurion Univ.), Y. Yeshurun (Bar-Han Univ.) and O. Shaffief (Hebrew Univ.). (Canada Auditorium) Medical Physics: Chairpersons: S. Akselrod (Tel-Aviv Univ.) and A. Weinreb (Hebrew Univ.) Invited Lecturers: R. Tirosh, B. Ehrenberg (Bar-llan Univ.) and D. Kwiat (Tel- Aviv Univ.). (Sprinzak 114) Condensed Matter: Chairman: D. Davidov (Hebrew Univ.). Invited lecturer: E. Ehrenfreund (Technion). (Kaplan B Hall) Opto-Electronic Devices and Thin Films (with the Israel Vauum Society): Chairman: A. Zemel (Soreq Nuclear Center) Invited Lecturers: R. Weil (Technion), J. Sagiv (Weizmann Inst.), Y. Lifshitz and and D. Eger (Soreq Nuclear Center). {Kaplan B Hail and Wise Auditorium) Quantum Optics (workshop): Organizers: Z. Rosenwaks (Ben Gurion Univ.) and Y. Oreg (Negev Nuclear Center). Invited Lecturer: K. Bergmann, Univ. of Kaiserslautern, Germany. Research groups from the Negev Research Center, Ben- Gurion, Tel-Aviv and Hebrew Universities, and the Weizmann Institute will participate. (Sprinzak 115) Chaos (workshop): Organizer: U. Smilansky (Weizmann Inst.). Invited Lecturers: D. Cohen (Technion) and E. Braun (Weizmann Inst.). {Sprinzak 216) 12:45 -14:30 Conference Lunch 15:00 -18:00 Visit to the Old City. Foreword Once again it is the turn of the Racah Institute of Physics to host the Annual Conference of the Israel Physical Society. We would like to extend a warm welcome to all participants and wish them a fruitful meeting and a pleasant stay in Jerusalem. A warm welcome is extended also to members of the Israeli Vacuum Society who hold their Annual Meeting jointly with ours. The Conference reflects the extent and diversity of physics research in Israel, ranging from the macro to the micro. The morning session of the first day is devoted to plenary lectures of general interest, while the sessions on Sunday afternoon and Monday morning consist each of four parallel sections of a more specific nature, covering most of the areas of physics research in the country. Among these sections there are two workshops, defined as such, but the difference between them and some of the ordinary sections is largely semantic. We have attempted to keep the overlap between sections to a minimum so as to enable each participant to choose the lectures of his interest without too much difficulty. The contributed papers will be presented orally except in two of the sections, where the large number of contributions made if necessary to present some of the papers by posters. A visit has been organized for Monday afternoon to the newly excavated underground tunnels in the Old City. Unfortunately, only a limited number of participants would be able to join this tour but we hope that everybody would take advantage of the free afternoon to enjoy the unique city of Jerusalem. Finally, I would like to thank the members of the local committee, the chairmen of the various sections, the secretariat of the Racah Institute and many others who have devoted much time and effort for the organization of the Conference. Special thanks are due to the secretary of the committee, Prof. M. Finkenthal, for his untiring and willing efforts to make this conference successful. A. Many Chairman of the Organizing Committee The Israel Physical Society Council Y. Yacoby (Hebrew University, President I. Tserruya (Weizmann Institute), Vice President V. Halpern (Bar-Han University), Treasurer I. Balberg (Hebrew University), Secretary D. Eger (Soreq Nuclear Research Center) S. Akselrod (Tel-Aviv University) S. Goshen (Negev Nuclear Research Center) R. Weil (Technion) A. Zinn (Rafael) I. Avishai (Ben-Gurion University) Corporate Members Bar-Han University Ben-Gurion University Hebrew University Israel Atomic Energy Authority Technion - Israel Institute of Technology Tel-Aviv University Weizmann Institute of Science Organizing Committee - The Hebrew University of Jerusalem A. Many, Chairman A. Marinov E. Rabinovici I. Unna M. Finkenthal, Secretary Abstracts Plenary Lectures Geometry in Modern Theoretical Physics 0. Alvarez University of California at Berkeley ABSTRACT Geometry has influenced our view in modern theoretical physics. The geometrical approach has been used to try to understand difficult questions in quantum field theory. Fortunately, many familiar problems in elementary quantum mechanics are examples of the geometrical ideas. By using simple quantum mechanical models we will develop he geometrical concepts and subsequently see what they tell us about more complicated situations in quantum field theory. NOVEL MAGNETIC PHENOMENA AND HIGH TEMPERATURE SUPERCONDUCTIVITY Robert J. Birgeneau, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 The discovery of high-temperature superconductivity in lamellar copper oxide materials is one of the most dramatic and unexpected events in physics in recent history. In this talk we will present our views on the basic physics of this new phenomenon and we will explain why the problem is proving to be so difficult in spite of the unprecedented assault on it by many thousands of physicists, chemists, and material scientists. It appears that the superconductivity in the CuO2 superconductors differs in an essential fashion microscopically from that in conventional electron - phonon driven systems. Both the S - 1/2 character of the Cu*+ ion and the quasi -two - dimensionality (2D) of the materials appear to be essential ingredients. All materials have in common the juxtaposition of an antiferromagnetic insulating state, a 2D weakly localized spin glass, and a superconducting phase which derives from a fluctuating short - range ordered, incommensurate 2D spin fluid. Many exotic theories have been proposed to explain the superconductivity but so far there are no definitive tests to choose a unique model. This work has been carried out in collaboration with a large number of colleagues including Amnon Aharony, Yasuo Endoh, Marc Kastner, and Gen Shirane. This research is supported by the U.S. National Science Foundation under contract Nos. DMR8S - 10856 and DMR87 - 19217. 1. Statistical Physics Invited Lectures A STRONGLY FRUSTRATED THREE DIMENSIONAL QUANTUM ANTIFERROMAGNET A. B. Harris University of Pennsylvania The magnetic Fe ions (S=5/2) in the insulator FeF3 form a lattice of corner sharing tetrahedra in which the dominant interactions between the nearest neighbors in each tetrahedron are antiferromagnetic. Magnetically, this structure is highly frustrated and therefore provides a three-dimensional analog of the highly interesting triangular antiferromagnet. For spins 1/2 on such a tetrahedral structure the ground state is well described as a
Recommended publications
  • Series Analysis of Randomly Diluted Nonlinear Networks with Negative Nonlinearity Exponent
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 9-1-1987 Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent Yigal Meir Raphael Blumenfeld A. Brooks Harris University of Pennsylvania, [email protected] Amnon Aharony Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Meir, Y., Blumenfeld, R., Harris, A., & Aharony, A. (1987). Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent. Physical Review B, 36 (7), 3950-3952. http://dx.doi.org/ 10.1103/PhysRevB.36.3950 At the time of publication, author A. Brooks Harris was affiliated withel T Aviv University, Tel Aviv, Israel. Currently, he is a faculty member in the Physics Department at the University of Pennsylvania. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/306 For more information, please contact [email protected]. Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent Abstract The behavior of randomly diluted networks of nonlinear resistors, for each of which the voltage-current relationship is |V|=r|I|α, where α is negative, is studied using low-concentration series expansions on d-dimensional hypercubic lattices. The average nonlinear resistance ⟨R⟩ between a pair of points on the same cluster, a distance r apart, scales as rζ(α)/ν, where ν is the correlation-length exponent for percolation, and we have estimated ζ(α) in the range −1≤α≤0 for 1≤d≤6. ζ(α) is discontinuous at α=0 but, for α<0, ζ(α) is shown to vary continuously from ζmax, which describes the scaling of the maximal self-avoiding-walk length (for α→0−), to ζBB, which describes the scaling of the backbone (at α=−1).
    [Show full text]
  • Vita and Publications ◊ December 23, 2004 ◊ 12
    BENOIT B. MANDELBROT VITA AND PUBLICATIONS ◊ DECEMBER 23, 2004 ◊ 12 RESEARCH PUBLICATIONS OTHER THAN BOOKS 1951 1 www AS & K FE4. M 1951. Adaptation d'un message sur la ligne de transmission, I & II. Comptes Rendus (Paris): 232, 1638-1640 & 2003-2005. 1952 2 M 1952. Sur la notion générale d'information et la durée intrinsèque d'une stratégie. Comptes Rendus (Paris): 234, 1346- 1348. 3 M 1952. Les démons de Maxwell. Comptes Rendus (Paris): 234, 1842-1844. 1953 4 M 1953t. Contribution à la théorie mathématique des jeux de communication (Ph.D. Thesis). Publications de l'Institut de Statistique de l'Université de Paris: 2, 1-124. 5 M 1953i. An informational theory of the statistical structure of language. Communication Theory, the Second London Symposium. Edited by Willis Jackson. London: Butterworth; New York: Academic, 486-504. 1954 6 M 1954w. Structure formelle des textes et communication (deux études). Word: 10, 1-27. • Corrections: Word: 11, 1955, 424. • English translation by Anthony G. Oettinger: The formal structure of texts and communication (two studies): Cambridge, MA, Harvard Computation Laboratory, 1955. • Czech translation: Komunikace a formalni struktura textu. Teorie informace a jazykoveda (=Information theory and linguistics), an anthology edited by Lubomir Dolozel. Prague: Press of the Czechoslovak Academy of Sciences, 1964, 130-150. • Excerpt: Le Langage, anthologie dirigée par Robert Pagès. Paris: Hachette, 1959, 55-57. • Summary: Information sans interprétation dans la description des langues réelles. Synthèse: 11, 1959, 160-161. 7 M 1954. Simple games of strategy occurring in communication through natural languages. Transactions of the IRE Professional Group on Information Theory: 3, 124-137.
    [Show full text]
  • Arxiv:2108.09998V1 [Cond-Mat.Mtrl-Sci] 23 Aug 2021
    Theory of Chirality Induced Spin Selectivity: Progress and Challenges Ferdinand Evers,1, ∗ Amnon Aharony,2 Nir Bar-Gill,3 Ora Entin-Wohlman,4 Per Hedeg˚ard,5 Oded Hod,6 Pavel Jelinek,7 Grzegorz Kamieniarz,8 Mikhail Lemeshko,9 Karen Michaeli,10 Vladimiro Mujica,11 Ron Naaman,12 Yossi Paltiel,3 Sivan Refaely-Abramson,13 Oren Tal,12 Jos Thijssen,14 Michael Thoss,15 Jan M. van Ruitenbeek,16 Latha Venkataraman,17 David H. Waldeck,18 Binghai Yan,10 and Leeor Kronik13, y 1Institute of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany 2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel 3Department of Applied Physics, Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel 4Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel 5Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark 6Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel 7Nanosurf Lab, Institute of Physics of the Czech Academy of Sciences, Prague 6, CZ 162 00, Czech Republic 8Department of Physics, Adam Mickiewicz University, Pozna´n61-614, Poland 9IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria 10Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovoth 7610001, Israel 11School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA 12Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovoth 76100, Israel 13Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel 143 Kavli Institute of Nanoscience Delft, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands 15Institute of Physics, University of Freiburg, Hermann-Herder-Str.
    [Show full text]
  • Introduction to Percolation Theory
    Introduction to Percolation Theory Introduction to Percolation Theory Revised Second Edition Dietrich Stauffer and Amnon Aharony This edition published in the Taylor & Francis e-Library, 2010. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk. UK Taylor & Francis Ltd, 1 Gunpowder Square, London EC4A 3DE. USA Taylor & Francis Inc, 325 Chestnut Street, 8th Floor, Philadelphia, PA 19106 1st edition copyright © Dietrich Stauffer 1985 2nd edition copyright © Dietrich Stauffer and Amnon Aharony 1991 Revised 2nd edition 1994 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photo- copying, recording or otherwise, without the prior permission of the copyright owner. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data is available Cover design by Amanda Barragry ISBN 0-203-21159-6 Master e-book ISBN ISBN 0-203-26914-4 (Adobe ebook Reader Format) ISBN 0 7484 0027 3 (Print Edition) Contents Preface to the Second Edition viii P reface to the First Edition ix 1 Introduction: Forest Fires, Fractal Oil Fields, and Diffusion 1 1.1 What is percolation? 1 1.2 Forest fires 4 1.3 Oil fields and fractals 8 1.4 Diffusion in disordered media 10 1.5 Coming attractions 12 Further reading 13 2 Cluster Numbers
    [Show full text]
  • Phase Diagrams for the Randomly Diluted Resistor Network and XY Model
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 10-1-1989 Phase Diagrams for the Randomly Diluted Resistor Network and XY Model A. Brooks Harris University of Pennsylvania, [email protected] Amnon Aharony Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Harris, A., & Aharony, A. (1989). Phase Diagrams for the Randomly Diluted Resistor Network and XY Model. Physical Review B, 40 (10), 7230-7238. http://dx.doi.org/10.1103/PhysRevB.40.7230 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/300 For more information, please contact [email protected]. Phase Diagrams for the Randomly Diluted Resistor Network and XY Model Abstract The randomly diluted resistor network and XY model at low temperature T are studied near the d-dimensional percolation threshold using the ɛ expansion, where ɛ=6-d. The series expansion of the inverse susceptibility in powers of T for the XY model is identical to that of the appropriate resistive −1 inverse susceptibility in powers of σ0 , where σ0 is the conductance of a bond. However, the temperature-dependent critical concentration pc(T) for the XY model has no analog in the resistor network, where pc clearly does not depend on σ0. This distinction arises from a rather subtle difference between the Fourier component representation of the Gaussian model for the resistor network and that of the bounded potential energy associated with the XY model. We introduce a family of models which provides a smooth interpolation between these two models and show that the phase boundary for the XY model satisfies certain simple self-consistency checks involving other susceptibilities.
    [Show full text]
  • (PBC) Steering Advisory Committee on Quantum Science And
    Planning and Budgeting Committee (PBC) Steering Advisory Committee on Quantum Science and Technology Final Report Presented to the Planning and Budgeting Committee General Assembly February 2018 1 | PAGE Preamble, Prof. Uri Sivan, Committee Chairman My heartfelt thanks to the committee members for their time and efforts invested in constructing the National Academic Quantum Science and Technology (QST) Program. Their expertise and the depth and scope of discussions have brought to the results presented below. My thanks to the Planning and Budgeting Committee (PBC) members, particularly to the Chairwomen, Prof. Zilbershats, for her continuous trust in the committee and its objective. Special thanks to the PBC representatives accompanying the Committee: Dr. Liat Maoz, Ms. Nina Ostrozhko and Mr. Amir Gat for their extraordinary devotion and contributions throughout. “The second quantum revolution”, which drove the PBC to declare QST as a priority field in its five- years plan, is underway. Testament to this are the expansive national and multinational programs announced by most developed countries and extensive commercial investments. The proposed program aims to lay down the academic foundation necessary for Israel to join this revolution. It leans upon the existing excellence and provides a roadmap of the steps necessary to significantly expand the scope of activity, improve research capacities and train a skilled workforce to set the revolution in motion in academia, industry and security sector. An expansive academic program is critical to position Israel at the forefront of global research and development, but realizing its national potential also demands partnering with additional entities experienced in laying down the infrastructure necessary to develop the industry and security needs.
    [Show full text]
  • Quantum Percolation in Magnetic Fields
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 3-3-1986 Quantum Percolation in Magnetic Fields Yigal Meir Amnon Aharony A. Brooks Harris University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Quantum Physics Commons Recommended Citation Meir, Y., Aharony, A., & Harris, A. (1986). Quantum Percolation in Magnetic Fields. Physical Review Letters, 56 (9), 976-979. http://dx.doi.org/10.1103/PhysRevLett.56.976 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/311 For more information, please contact [email protected]. Quantum Percolation in Magnetic Fields Abstract A generalized average inverse participation ratio, for the one-electron wave functions of a dilute tight- binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields. Extended vwa e functions appear above a quantum threshold bond concentration, pq. This threshold decreases at small magnetic fields, and shows a periodic dependence on the magnetic flux through a basic plaquette, with period φ0=ℏc/e. Extended states appear and disappear periodically even at d=2. Disciplines Physics | Quantum Physics This journal article is available at ScholarlyCommons: https://repository.upenn.edu/physics_papers/311 Vm, UME 56, NUMsER9 PHYSICAL REVIEW LETTERS 3 MARcH 1986 Quantum Percolation in Magnetic Fields Yigal Meir and Amnon Aharony School of Physics and Astronomy, Tel A vi v University, Tel A vi v 699?8, Israel A. Brooks Harris Department of Physics, University ofPennsylvania, Philadelphia, Pennsylvania, I 9104 (Received 8 August 1985) A generalized average inverse participation ratio, for the one-electron wave functions of a dilute tight-binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields.
    [Show full text]
  • Fractal Dimensions and Corrections to Scaling for Critical Potts Clusters
    Fractals, Vol. 0, No. 0 (0000) c❢ World Scientific Publishing Company FRACTAL DIMENSIONS AND CORRECTIONS TO SCALING FOR CRITICAL POTTS CLUSTERS AMNON AHARONY School of Physics and Astronomy Raymond and Beverly Sackler Faculty of exact Sciences Tel Aviv University, Tel Aviv 69978, Israel JOONAS ASIKAINEN Laboratory of Physics, Helsinki University of Technology P. O. Box 1100, FIN-02150 HUT, Espoo, Finland Abstract Renormalization group and Coulomb gas mappings are used to derive theoretical predictions for the corrections to the exactly known asymptotic fractal masses of the hull, external perimeter, singly connected bonds and total mass of the Fortuin- Kasteleyn clusters for two-dimensional q-state Potts models at criticality. For q = 4 these include exact logarithmic (as well as log log) corrections. arXiv:cond-mat/0206367v2 [cond-mat.stat-mech] 21 Jun 2002 1. INTRODUCTION q-state Potts models, with interaction Jδ (σ = 1, 2, ..., q) for the nearest neighbor − σiσj i,j (nn) sites i, j, have played an important role in condensed matter physics1. Here we study geometrical aspects of the critical Potts clusters, in two dimensions. For an arbitrary con- figuration of Potts states, one creates bonds between neighboring sites which have the same 1 2 Fractal Dimensions for Critical Potts Clusters state, σ = σ , with a probability p = 1 exp ( J/kT ). No bonds are created between sites i j − − with σi = σj. Here we study the fractal geometry at Tc of the clusters, made of sites con- 6 2 nected by bonds . Specifically, we measure the fractal dimensions DM , DH , DEP , and DSC describing the scaling of the cluster’s mass, hull, external accessible perimeter3 and singly connected bonds4, respectively, with its radius of gyration R.
    [Show full text]
  • Mary Elizabeth Parks Cv
    Mary Elizabeth Parks cv http://departments.colgate.edu/physics/faculty/Parks%20cv.htm Mary Elizabeth Parks Education: Sept. 1989- University of California, Berkeley August 1995 Ph.D. in Physics, December 1995 Thesis: High Frequency Electrodynamics of the Cuprate Superconductors in the Vortex State M. A. in Physics, May 1991 Sept. Princeton University 1984-June A. B. in Physics, magna cum laude, June 1988 1988 Research and Teaching Positions: July Assistant Professor, Colgate University, Department of Physics 1997-present Research: terahertz spectroscopy of condensed matter systems Teaching: courses for the physics concentration and for non-majors Sept. Post-doctoral Associate, M. I. T., Department of Physics 1995-June supervisor: M. Kastner 1997 Effect of carrier doping on systems with magnetic order June Graduate Student Researcher, U. C. Berkeley, Department of Physics 1990-August supervisor: J. Orenstein 1995 Coherent time-domain spectroscopy of high-Tc superconductors in high magnetic fields August Graduate Student Instructor, U.C. Berkeley, Department of Physics 1994-Dec. Intensive section of introductory electricity and magnetism for minorities in 1994 engineering August Graduate Student Instructor, U.C. Berkeley, Department of Physics 1989-May Courses: Introduction to modern physics, Honors introductory mechanics 1990 August Chemistry Teacher, St. Columbkille High School, Brighton, MA 1988-June Three sections of chemistry with laboratories 1989 1 of 10 6/4/09 1:50 PM Mary Elizabeth Parks cv http://departments.colgate.edu/physics/faculty/Parks%20cv.htm
    [Show full text]
  • Symposium on Quantum Computing and Quantum Optics II
    Symposium on Quantum Computing and Quantum Optics II May 24-26, Zhejiang University (211 Shaoke Building, Yuquan Campus), Hangzhou, China May 24, Friday Morning Session I, Chairman: Joe Eberly 8:00-8:05 Shi-Yao Zhu, Opening remarks Zhejiang University, China 8:05-8:50 Marlan O. Scully On Bose condensates, squeezed Texas A&M University, USA light and black holes 8:50-9:20 Hongxing Xu Plasmonic Nanocavity Wuhan University, China 9:20-9:50 M. Suhail Zubairy Erasing memory-Protecting Texas A&M University, USA quantum coherence and entanglement 9:50-10:20 Coffee Break, Taking photos Session II, Chairman: Marlan O. Scully 10:20-10:50 Joe Eberly Single-Photon Interference, University of Rochester, Duality, Entanglement, and USA Delayed Choice Experiments 10:50-11:20 Xiaobo Zhu Genuine 12-Qubit Entanglement University of Science and on a Superconducting Quantum Technology, China Processor 11:20-11:50 Barry Garraway Dressed-atom potentials for University of Sussex, UK matter-wave interference 11:50-12:20 Anatoly Svidzinsky Excitation of cavity modes by a Texas A&M University, USA moving atom through virtual transitions May 24, Friday Afternoon Session I, Chairman: Hongxing Xu 13:30-14:00 Peter Nordlander Quantum Plasmonics and Rice University, USA Applications in Light Harvesting 14:00-14:30 Kohzo Hakuta Nanofiber Cavity-QED for University of Electro- Manipulating Single Photons Communications, Japan 14:30-15:00 Ed Fry Research Capabilities via an Texas A&M University, Ultrahigh Diffuse Reflecting Material USA 15:00-15:30 Coffee Break, Poster Session
    [Show full text]
  • Low Dimensional Quantum Magnetism in the Copper Oxides
    Le NO9900025 Low Dimensional Quantum Magnetism in the Copper Oxides Ora Entin-Wohlman and Amnon Aharony School of Physics and Astronomy, Tel Aviv University, Israel The magnetism of lamellar copper oxides, which are the parent mate- rials of high temperature superconductors, is dominated by the spin 1/2 Cu+2 ions on the CuC>2 planes. These planes have Cu ions on the vertices and O ions on the bonds of a square lattice, and their magnetic behavior at high temperature is described well by the planar quantum Heisenberg an- tiferromagnetic (AFM) model, which has long range order only at T=0. In fact they have three dimensional AFM order due to weak spin anisotropies and interplane couplings. Starting from a Hubbard model with spin orbit and Coulomb exchange couplings, we derive an effective magnetic Hamil- tonian which contains these anisotropies and couplings. An analysis of the zero point quantum spin wave energies generates additional four-fold sym- metry terms and delicate higher order interplane interactions, which help select a ground state among states which would otherwise be degenerate due to frustration. Having generated the full effective magnetic Hamiltonian, the results are used to identify the magnetic structures and competitions among them, leading to phase diagrams in parameter space. These are also used to discuss the critical phenomena which occur near various possible transitions. Specific attention will be devoted to the structures of tetrago- nal Sr2CuO2Cl2, Nd2CuC>4 and P^CuO^ In the former, frustration among layers is lifted by pseudodipolar interactions and by quantum zero point en- ergies. In the latter two, the rare earth also participates in the magnetism.
    [Show full text]
  • Participants
    Participants Ximena C. Abrevaya (Instituto de Astronomía y Física del Espacio, Universidad de Buenos Aires) Nafisa Aftab (Raman Research Institute) Vladimir Airapetian (American University, DC/GSFC) Vitaly Akimkin (Institute of Astronomy, RAS) Isaac Akin-olamigoke (Federal University Of Technology, Akure) Abdul Athem Alsabti (University College London) Julian David Alvarado Gomez (Harvard-Smithsonian Center for Astrophysics) Alan Alves-Brito (Federal University of Rio Grande do Sul) Matthias Ammler-von Eiff (Max Planck Institute for Solar System Research) Sean Andrews (Harvard-Smithsonian Center for Astrophysics) Megan Ansdell (University of California-Berkeley) Daniel Apai (The University of Arizona) Sota Arakawa (Tokyo Institute of Technology) Brent Archinal (U. S. Geological Survey) Jean-Eudes ARLOT (CNRS IMCCE UMR8028) Daniel Austin (Brigham Young University) Hans Baehr (Max Planck Institute for Astronomy) Alexander V. Bagrov (INASAN) David Bancelin (Institute of Astrophysics, University of Vienna) Tae-Yang Bang (Kyungpook National University, Korea) RULEE BARUAH (HRH The Prince of Wales Institute of Engineering and Technology) James Bauer (University of Maryland) Bernhard Baumann (Institut für Astrophysik) Amelia Bayo (Instituto de Física y Astornomía, Universidad de Valparaiso) Akos Bazso (Institut für Astrophysik) Juan Antonio Belmonte (Instituto de Astrofisica de Canarias) Irina Belskaya (Institute of Astronomy, V.N. Karazin Kharkiv National University) Zouhair Benkhaldoun (Oukaimeden Observatory, Cadi Ayyad University) David
    [Show full text]