BULE1TIN of the ISRAEL Physieal SOCIETY

Total Page:16

File Type:pdf, Size:1020Kb

BULE1TIN of the ISRAEL Physieal SOCIETY TRN BULE1TIN OF THE ISRAEL PHYSieAL SOCIETY 1979 Annual Meeting PROGRAM and ABSTRACTS -'. ' '•' y -, BULLETIN OF THE ISRAEL PHYSICAL SOCIETY I o •0 to H 1979 i 10 Annual Meeting PROGRAM | } and '\ ABSTRACTS i THE ISRAEL PHYSICAL SOCIETY Members of the Council for 1978-1979 PRESIDENT C. Kuper Israel Institute of Technology VICE-PRESIDENT M. Luban Bar-IIan University TREASURER B. Arad Soreq Nuclear Research Center SECRETARY J. Felsteiiser Israel Insitute of Technology Members at Large U. Atzmony Nuclear Research Center-Negev Y. Disatnik Tel-Aviv University M. Gavish Ministry of Defence Armament Development Authority, Haifa A. Gersten Ben-Gurion University n.Z. Frenkel Hebrew University M. Kirson Weizmann Insitute of Science THE ISRAEL PHYSICAL SOCIETY COOPERATE MEMBERS Ben-Gurion University of the Negev Bar-Ilan University Tel-Aviv University Elscint Ltd. Hebrew University of Jerusalem Technion - Israel Institute of Technology Weizmarm Insitute of Science THE ISRAEL PHYSICAL SOCIETY 1979 ANNUAL MEETING BEN-GURION UNIVERSITY OF THE NEGEV BEER SHEVA, 1-2 APRIL 1979 -iW,: PREAMBLE ?;*•• The 1979 annual meeting of the Israel Physical Society will take ; place at the new campus of the Ben-Gurion University of the Negev, in ;•.; Beer-Sheva, on Sunday and Monday, 1-2 April 1979, I' The plenary sessions will be held in the 06 auditorium, in Alef .',•'. building. The parallel sessions will be held on the third floor of the I;: library. /.;y The registration will begin at 9:45 a.m., Sunday morning. The - registration desk will be located in front of the 06 auditorium. ;"\ In the evening of the first day there will be a banquet at the Neot Midbar Hotel. The banquet will begin at 7:30 p.m. The after dinner speaker will be Professor Oren of the Department of Archeology, Ben-Gurioii university, who will speak about, and show slides of, the recent archeological discoveries in the Sinai desert. The organizing committee wishes to thank Professor V, Volterra, head of the Physics Department, Professor D. Bahat, Dean of the Faculty of Natural Sciences, and Professor M. Rosen, Hector of the University, for financial support. The Organizing Connittee S. Malin - Chairman S. Mordechai A. Rabinovitch THE ISRAEL PHYSICAL SOCIETY 1979 ANNUAL .MEETING 1-2 April, 1979 Ben-Gurion University ox the Negev CONDENSED PROGRAM Sunday Morning Alef Building 9:45 Registration 4 10:15 'A'ords of Welcome (06 Auditorium) Mr, Yosef Tekoa, President of the Ben-Gurion University of the Negev A. Shapira will present the Yom Kippur War Memorial Fund . Scholarship, granted by the IPS in memory of the members of the Society who fell in the Yom Kippur War, 10.45 Plenary Session (06 Auditorium) Y. Ne'eman, Tel-Aviv University - Presiding B. Levich, Tel Aviv University (40 min) The Role Played by Theoretical Physics in Modern Applied Science M. Dresden, Institute for Theoretical Physics, State University of New York at Stony Brook, USA (40 min) On Solitons and Supersymraetry 12:30 Business Meeting of the Israel Physical Society (06 Auditorium) LUNCH Sunday Afternoon 14:30 Parallel Sessions Library Building Room 32S A. General Relativity and Astrophysics Y. Katz, The Hebrew University - Presiding M. Carmeli, Ben Gurion University of the Negev (30 min) Classification of Gauge Fields Contributed Papers B. Lasers and Optics Room 309 A. Levine, Nuclear Research Center, Negev - Presiding S. Yatsiv, The Hebrew University (30 min) The Role of Emission from Metastable States of Free Atoms in Lasers G. Erez, Ben-Gurion University and Nuclear Research Center- Negev (30 min) Experimental Determination of Populations in Copper Vapour Laser t; Contributed Papers I- \ \-& - 5 - ;-'V C. Applied Physics Room 326 >••-• K. Weiser, Israel Institute of Technology, Haifa - Presiding |;" D. Electric and Magnetic Properties of Solids Room 323 ?Vl A.A. Hirsch, Israel Institute of Technology, Haifa - ,{VJ Presiding JfX D. Zamir, Soreq Nuclear Research Center (30 min) g. A Study of the Electronic Structure of Metal Hydrides ''•"•; using NMR Techniques j-v Contributed Papers 'X E. Thin Layers Room 308 ;:'• E. Gruenbaum, Tel-Aviv University - Presiding K. J. Gersten, The Hebrew University (30 min) •:• Interaction and Processes of Semi-Conductor Surfaces p. Z. Weinberg, Israel Institute of Technology, Haifa (30 rain) • . Transport Properties of SiO2 ^ Contributed Papers Business Meeting of the Thin Layers Division F. Atomic and Molecular Physics Room 322 A.S. Kaufman, The Hebrew University - Presiding B. Rosner, The Israel Institute of Technology, Haifa (30 min) Atomic Processes in Heavy Ions Collisions with Small Impact Parameter Contributed Papers Sunday Evening 19:30 Banquet of the Israel Physical Society at the Neot Midbar Hotel I''"; Monday Morning Library Building | 9:30 Parallel Sessions t> G. Defects in Solids Room 322 |~ M. Dariel, Ben-Gurion University 3 Nuclear Research Center, : Negev - Presiding ;-., Contributed Papers •'•'• ;;: ' H. Phase Transitions Room 325 p . R. Thieberger, Ben-Gurion University 6 Nuclear Research i[Z Center, Negev - Presiding ?; Contributed Papers I. Condensed Matter - General Room 323 S. Shtrikman, The Weizmann Institute - Presiding M. Luban. Bar-IIan University, Ramat-Gan (30 rain) Equations of State of Fluids and the Virial Expansion Contributed Papers J. Nuclear Physics Room 309 K. Blueler, University of Bonn - Presiding Y. Eisenberg, Tel Aviv University, Ramat-Aviv, Tel Aviv (30 min) Recent Developments in Meson-Nucleus Interactions E. Friedman, The Hebrew University (30 min) New Results for Pionic Atoms and Applications in Nuclear Physics Contributed Papers K. Plasma and Fusion Room 308 S. Kuperman, Tel Aviv University - Presiding Z. Vager, The Weizaann Institute (30 min) Experimental Study of Electronic Plasma in Solids via the Explosion of Fast Molecular Ions Contributed Papers LUNCH Monday Afternoon Alef Building 14:30 Plenary Session (06 Auditorium) C. Kuper, Israel Institute of Technology, Haifa - Presiding L.Schulman, Israel Institute of Technology, Haifa (40 min) First Order Phase Transitions: Progress and Problems D. Gill, Ben-Gurion University (40 min} Fluorescent Biophysical Probes Z. Lipkin, The Weizmann Institute (40 min) What is a Quark? •A I••1 1 7 THE ISRAEL PHYSICAL SOCIETY 1979 ANNUAL MEETING 1-2 April, 1979 Ben-Gurion University of the Ne.gev COMPLETE PROGRAM Sunday Morning Alef Building 9:45 Registration 10:IS Words of Welcome (06 Auditorium) Mr.Yosef Tekoa, President of the Ben-Gurion University of the Negev A. Shapira will present the Yon Kippur War Memorial Fund Scholarship, granted by the IPS in memory of the .members of the Society who fell in the Yom Kippur War, 10:45 Plenary Session (06 Auditorium) Y. Ne'eman, Tel Aviv University - Presiding B. Levich, Tel Aviv University (40 nin) The Role Played by Theoretical Physics in Modern Applied Science M. Dresden, Institute for Theoretical Physics, State University of New York at Stony Brook, USA (40 nin) On Solitons and Supersyametry 12:30 Business Meeting of the Israel Physical Society (06 Auditorium) LUNCH | ;| 'i SUNDAY AFTERNOON, 1 APRIL 1979 LIBRARY BUILDING 14; 30 (Room 325) A. GENERAL RELATIVITY AND ASTROPHYSICS Y. KatE, The Hebrew University, Jerusalem - Presiding A-l CLASSIFICATION OF GAUGE FIELDS C30 min) M. Carmeli, Ben-Gurion University, Beer-Sheva A-2 THE INFLUENCE OF THE UNIVERSE ON THE PLANET MOTION M. Ya. Azbel Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv The influence of the inhomogeneity and non-ftationarity of the Universe on the planet motion is investigated. It is probably below the present experimental accuracy, but when the accuracy increases, it may provide the information about the Universe inhomogeneity. A-3 CLASSICAL NONLINEAR DYNAMICS OF COUPLED NAVES IN MODEL UNIVERSES Ch. Charach Department of Physics, Ben-Gurion University of the Negev, Beer Sheva Following the approach developed by Gowdy, Berger and Misner we construct closed inhomogeneous cosmological models containing i) gravitational-scalar, ii) gravitational-electromagnetic waves. These models are obtained as a result of homogeneity breaking in the scalar and electromagnetic Bianchi type I models. These cosmological solutions provide exactly solvable examples for the study of nonlinear fully relativistic regime of coupled scalar-gravitational and electromagnetic- gravitational waves in the early universe. The asymptotic behavior is considered in the vicinity of the initial singularity and in the high frequency limit. It is shown that the wave coupling phenomena cause an evolution, which is significantly different from that of the vacuum - 9 model. We suppose that, like the enpty universe, the present solutions can be used as an input for the subsequent quantization program. 1. R. Gowdy, Phys. Rev. Lett. 12, 60 (1971); Ann. Phys. (N.Y.) 83, 203 (1974). — '«••'—• 2. B.K. Berger, Ann. Phys. Oi.Y.) 83, 458 (1974); Phys. Rev. D 11, 2770 (1975). — — 3. C.W. Misner, Phys. Rev. D 8, 3271 (1973). 4. Ch. Charach, S. Malin, ffcys. Rev. D. (in press). 5. Ch. Charach, Phys. Rev. D (in press). A-4 ON THE DIMENSIONS OF TIE UHVERSE AS LARGE NUMBERS Yigal Ronen Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer Sheva The Planck's system of units Lp = (RG/c)"5 = 1.62 x 10"35m. Tp = (fiG/C5)* = 5.39 x lO-^sec, and Up - (ftc/G)-S = 2.18 x io~8kg are the most fundamental ones. This system of units is based on the most univer- sal principles of Physics, sanely, the laws of black body radiation and gravitation. Expressing the dimensions of the universe with Planck's system of units we obtain the following values: the universe mass 1053/2.2 x 10"8 » 1061, the universe age 6.3 * WplfSA x 10"1*1* » 106J, and the universe radius 1026/1.6 x 1O"3S « 10s1. The large numbers obtained seem to support the unlikelihood of their accidental corresponding and seen to agree with Dirac's Large Number hypothesis. 1"lf To maintain the connection between the universe's dimensions during time, either G has to decrease proportionally to t"1 and the universe's mass increased proportionally to* t2 or no mass creation with G increasing proportionally to t.
Recommended publications
  • Series Analysis of Randomly Diluted Nonlinear Networks with Negative Nonlinearity Exponent
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 9-1-1987 Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent Yigal Meir Raphael Blumenfeld A. Brooks Harris University of Pennsylvania, [email protected] Amnon Aharony Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Meir, Y., Blumenfeld, R., Harris, A., & Aharony, A. (1987). Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent. Physical Review B, 36 (7), 3950-3952. http://dx.doi.org/ 10.1103/PhysRevB.36.3950 At the time of publication, author A. Brooks Harris was affiliated withel T Aviv University, Tel Aviv, Israel. Currently, he is a faculty member in the Physics Department at the University of Pennsylvania. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/306 For more information, please contact [email protected]. Series Analysis of Randomly Diluted Nonlinear Networks With Negative Nonlinearity Exponent Abstract The behavior of randomly diluted networks of nonlinear resistors, for each of which the voltage-current relationship is |V|=r|I|α, where α is negative, is studied using low-concentration series expansions on d-dimensional hypercubic lattices. The average nonlinear resistance ⟨R⟩ between a pair of points on the same cluster, a distance r apart, scales as rζ(α)/ν, where ν is the correlation-length exponent for percolation, and we have estimated ζ(α) in the range −1≤α≤0 for 1≤d≤6. ζ(α) is discontinuous at α=0 but, for α<0, ζ(α) is shown to vary continuously from ζmax, which describes the scaling of the maximal self-avoiding-walk length (for α→0−), to ζBB, which describes the scaling of the backbone (at α=−1).
    [Show full text]
  • Vita and Publications ◊ December 23, 2004 ◊ 12
    BENOIT B. MANDELBROT VITA AND PUBLICATIONS ◊ DECEMBER 23, 2004 ◊ 12 RESEARCH PUBLICATIONS OTHER THAN BOOKS 1951 1 www AS & K FE4. M 1951. Adaptation d'un message sur la ligne de transmission, I & II. Comptes Rendus (Paris): 232, 1638-1640 & 2003-2005. 1952 2 M 1952. Sur la notion générale d'information et la durée intrinsèque d'une stratégie. Comptes Rendus (Paris): 234, 1346- 1348. 3 M 1952. Les démons de Maxwell. Comptes Rendus (Paris): 234, 1842-1844. 1953 4 M 1953t. Contribution à la théorie mathématique des jeux de communication (Ph.D. Thesis). Publications de l'Institut de Statistique de l'Université de Paris: 2, 1-124. 5 M 1953i. An informational theory of the statistical structure of language. Communication Theory, the Second London Symposium. Edited by Willis Jackson. London: Butterworth; New York: Academic, 486-504. 1954 6 M 1954w. Structure formelle des textes et communication (deux études). Word: 10, 1-27. • Corrections: Word: 11, 1955, 424. • English translation by Anthony G. Oettinger: The formal structure of texts and communication (two studies): Cambridge, MA, Harvard Computation Laboratory, 1955. • Czech translation: Komunikace a formalni struktura textu. Teorie informace a jazykoveda (=Information theory and linguistics), an anthology edited by Lubomir Dolozel. Prague: Press of the Czechoslovak Academy of Sciences, 1964, 130-150. • Excerpt: Le Langage, anthologie dirigée par Robert Pagès. Paris: Hachette, 1959, 55-57. • Summary: Information sans interprétation dans la description des langues réelles. Synthèse: 11, 1959, 160-161. 7 M 1954. Simple games of strategy occurring in communication through natural languages. Transactions of the IRE Professional Group on Information Theory: 3, 124-137.
    [Show full text]
  • Arxiv:2108.09998V1 [Cond-Mat.Mtrl-Sci] 23 Aug 2021
    Theory of Chirality Induced Spin Selectivity: Progress and Challenges Ferdinand Evers,1, ∗ Amnon Aharony,2 Nir Bar-Gill,3 Ora Entin-Wohlman,4 Per Hedeg˚ard,5 Oded Hod,6 Pavel Jelinek,7 Grzegorz Kamieniarz,8 Mikhail Lemeshko,9 Karen Michaeli,10 Vladimiro Mujica,11 Ron Naaman,12 Yossi Paltiel,3 Sivan Refaely-Abramson,13 Oren Tal,12 Jos Thijssen,14 Michael Thoss,15 Jan M. van Ruitenbeek,16 Latha Venkataraman,17 David H. Waldeck,18 Binghai Yan,10 and Leeor Kronik13, y 1Institute of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany 2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel 3Department of Applied Physics, Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel 4Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel 5Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark 6Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel 7Nanosurf Lab, Institute of Physics of the Czech Academy of Sciences, Prague 6, CZ 162 00, Czech Republic 8Department of Physics, Adam Mickiewicz University, Pozna´n61-614, Poland 9IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria 10Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovoth 7610001, Israel 11School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA 12Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovoth 76100, Israel 13Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel 143 Kavli Institute of Nanoscience Delft, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ The Netherlands 15Institute of Physics, University of Freiburg, Hermann-Herder-Str.
    [Show full text]
  • Introduction to Percolation Theory
    Introduction to Percolation Theory Introduction to Percolation Theory Revised Second Edition Dietrich Stauffer and Amnon Aharony This edition published in the Taylor & Francis e-Library, 2010. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk. UK Taylor & Francis Ltd, 1 Gunpowder Square, London EC4A 3DE. USA Taylor & Francis Inc, 325 Chestnut Street, 8th Floor, Philadelphia, PA 19106 1st edition copyright © Dietrich Stauffer 1985 2nd edition copyright © Dietrich Stauffer and Amnon Aharony 1991 Revised 2nd edition 1994 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photo- copying, recording or otherwise, without the prior permission of the copyright owner. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data is available Cover design by Amanda Barragry ISBN 0-203-21159-6 Master e-book ISBN ISBN 0-203-26914-4 (Adobe ebook Reader Format) ISBN 0 7484 0027 3 (Print Edition) Contents Preface to the Second Edition viii P reface to the First Edition ix 1 Introduction: Forest Fires, Fractal Oil Fields, and Diffusion 1 1.1 What is percolation? 1 1.2 Forest fires 4 1.3 Oil fields and fractals 8 1.4 Diffusion in disordered media 10 1.5 Coming attractions 12 Further reading 13 2 Cluster Numbers
    [Show full text]
  • Phase Diagrams for the Randomly Diluted Resistor Network and XY Model
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 10-1-1989 Phase Diagrams for the Randomly Diluted Resistor Network and XY Model A. Brooks Harris University of Pennsylvania, [email protected] Amnon Aharony Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Harris, A., & Aharony, A. (1989). Phase Diagrams for the Randomly Diluted Resistor Network and XY Model. Physical Review B, 40 (10), 7230-7238. http://dx.doi.org/10.1103/PhysRevB.40.7230 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/300 For more information, please contact [email protected]. Phase Diagrams for the Randomly Diluted Resistor Network and XY Model Abstract The randomly diluted resistor network and XY model at low temperature T are studied near the d-dimensional percolation threshold using the ɛ expansion, where ɛ=6-d. The series expansion of the inverse susceptibility in powers of T for the XY model is identical to that of the appropriate resistive −1 inverse susceptibility in powers of σ0 , where σ0 is the conductance of a bond. However, the temperature-dependent critical concentration pc(T) for the XY model has no analog in the resistor network, where pc clearly does not depend on σ0. This distinction arises from a rather subtle difference between the Fourier component representation of the Gaussian model for the resistor network and that of the bounded potential energy associated with the XY model. We introduce a family of models which provides a smooth interpolation between these two models and show that the phase boundary for the XY model satisfies certain simple self-consistency checks involving other susceptibilities.
    [Show full text]
  • (PBC) Steering Advisory Committee on Quantum Science And
    Planning and Budgeting Committee (PBC) Steering Advisory Committee on Quantum Science and Technology Final Report Presented to the Planning and Budgeting Committee General Assembly February 2018 1 | PAGE Preamble, Prof. Uri Sivan, Committee Chairman My heartfelt thanks to the committee members for their time and efforts invested in constructing the National Academic Quantum Science and Technology (QST) Program. Their expertise and the depth and scope of discussions have brought to the results presented below. My thanks to the Planning and Budgeting Committee (PBC) members, particularly to the Chairwomen, Prof. Zilbershats, for her continuous trust in the committee and its objective. Special thanks to the PBC representatives accompanying the Committee: Dr. Liat Maoz, Ms. Nina Ostrozhko and Mr. Amir Gat for their extraordinary devotion and contributions throughout. “The second quantum revolution”, which drove the PBC to declare QST as a priority field in its five- years plan, is underway. Testament to this are the expansive national and multinational programs announced by most developed countries and extensive commercial investments. The proposed program aims to lay down the academic foundation necessary for Israel to join this revolution. It leans upon the existing excellence and provides a roadmap of the steps necessary to significantly expand the scope of activity, improve research capacities and train a skilled workforce to set the revolution in motion in academia, industry and security sector. An expansive academic program is critical to position Israel at the forefront of global research and development, but realizing its national potential also demands partnering with additional entities experienced in laying down the infrastructure necessary to develop the industry and security needs.
    [Show full text]
  • Quantum Percolation in Magnetic Fields
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 3-3-1986 Quantum Percolation in Magnetic Fields Yigal Meir Amnon Aharony A. Brooks Harris University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Quantum Physics Commons Recommended Citation Meir, Y., Aharony, A., & Harris, A. (1986). Quantum Percolation in Magnetic Fields. Physical Review Letters, 56 (9), 976-979. http://dx.doi.org/10.1103/PhysRevLett.56.976 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/311 For more information, please contact [email protected]. Quantum Percolation in Magnetic Fields Abstract A generalized average inverse participation ratio, for the one-electron wave functions of a dilute tight- binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields. Extended vwa e functions appear above a quantum threshold bond concentration, pq. This threshold decreases at small magnetic fields, and shows a periodic dependence on the magnetic flux through a basic plaquette, with period φ0=ℏc/e. Extended states appear and disappear periodically even at d=2. Disciplines Physics | Quantum Physics This journal article is available at ScholarlyCommons: https://repository.upenn.edu/physics_papers/311 Vm, UME 56, NUMsER9 PHYSICAL REVIEW LETTERS 3 MARcH 1986 Quantum Percolation in Magnetic Fields Yigal Meir and Amnon Aharony School of Physics and Astronomy, Tel A vi v University, Tel A vi v 699?8, Israel A. Brooks Harris Department of Physics, University ofPennsylvania, Philadelphia, Pennsylvania, I 9104 (Received 8 August 1985) A generalized average inverse participation ratio, for the one-electron wave functions of a dilute tight-binding model on a d-dimensional hypercubic lattice, is studied at finite magnetic fields.
    [Show full text]
  • Fractal Dimensions and Corrections to Scaling for Critical Potts Clusters
    Fractals, Vol. 0, No. 0 (0000) c❢ World Scientific Publishing Company FRACTAL DIMENSIONS AND CORRECTIONS TO SCALING FOR CRITICAL POTTS CLUSTERS AMNON AHARONY School of Physics and Astronomy Raymond and Beverly Sackler Faculty of exact Sciences Tel Aviv University, Tel Aviv 69978, Israel JOONAS ASIKAINEN Laboratory of Physics, Helsinki University of Technology P. O. Box 1100, FIN-02150 HUT, Espoo, Finland Abstract Renormalization group and Coulomb gas mappings are used to derive theoretical predictions for the corrections to the exactly known asymptotic fractal masses of the hull, external perimeter, singly connected bonds and total mass of the Fortuin- Kasteleyn clusters for two-dimensional q-state Potts models at criticality. For q = 4 these include exact logarithmic (as well as log log) corrections. arXiv:cond-mat/0206367v2 [cond-mat.stat-mech] 21 Jun 2002 1. INTRODUCTION q-state Potts models, with interaction Jδ (σ = 1, 2, ..., q) for the nearest neighbor − σiσj i,j (nn) sites i, j, have played an important role in condensed matter physics1. Here we study geometrical aspects of the critical Potts clusters, in two dimensions. For an arbitrary con- figuration of Potts states, one creates bonds between neighboring sites which have the same 1 2 Fractal Dimensions for Critical Potts Clusters state, σ = σ , with a probability p = 1 exp ( J/kT ). No bonds are created between sites i j − − with σi = σj. Here we study the fractal geometry at Tc of the clusters, made of sites con- 6 2 nected by bonds . Specifically, we measure the fractal dimensions DM , DH , DEP , and DSC describing the scaling of the cluster’s mass, hull, external accessible perimeter3 and singly connected bonds4, respectively, with its radius of gyration R.
    [Show full text]
  • Mary Elizabeth Parks Cv
    Mary Elizabeth Parks cv http://departments.colgate.edu/physics/faculty/Parks%20cv.htm Mary Elizabeth Parks Education: Sept. 1989- University of California, Berkeley August 1995 Ph.D. in Physics, December 1995 Thesis: High Frequency Electrodynamics of the Cuprate Superconductors in the Vortex State M. A. in Physics, May 1991 Sept. Princeton University 1984-June A. B. in Physics, magna cum laude, June 1988 1988 Research and Teaching Positions: July Assistant Professor, Colgate University, Department of Physics 1997-present Research: terahertz spectroscopy of condensed matter systems Teaching: courses for the physics concentration and for non-majors Sept. Post-doctoral Associate, M. I. T., Department of Physics 1995-June supervisor: M. Kastner 1997 Effect of carrier doping on systems with magnetic order June Graduate Student Researcher, U. C. Berkeley, Department of Physics 1990-August supervisor: J. Orenstein 1995 Coherent time-domain spectroscopy of high-Tc superconductors in high magnetic fields August Graduate Student Instructor, U.C. Berkeley, Department of Physics 1994-Dec. Intensive section of introductory electricity and magnetism for minorities in 1994 engineering August Graduate Student Instructor, U.C. Berkeley, Department of Physics 1989-May Courses: Introduction to modern physics, Honors introductory mechanics 1990 August Chemistry Teacher, St. Columbkille High School, Brighton, MA 1988-June Three sections of chemistry with laboratories 1989 1 of 10 6/4/09 1:50 PM Mary Elizabeth Parks cv http://departments.colgate.edu/physics/faculty/Parks%20cv.htm
    [Show full text]
  • Symposium on Quantum Computing and Quantum Optics II
    Symposium on Quantum Computing and Quantum Optics II May 24-26, Zhejiang University (211 Shaoke Building, Yuquan Campus), Hangzhou, China May 24, Friday Morning Session I, Chairman: Joe Eberly 8:00-8:05 Shi-Yao Zhu, Opening remarks Zhejiang University, China 8:05-8:50 Marlan O. Scully On Bose condensates, squeezed Texas A&M University, USA light and black holes 8:50-9:20 Hongxing Xu Plasmonic Nanocavity Wuhan University, China 9:20-9:50 M. Suhail Zubairy Erasing memory-Protecting Texas A&M University, USA quantum coherence and entanglement 9:50-10:20 Coffee Break, Taking photos Session II, Chairman: Marlan O. Scully 10:20-10:50 Joe Eberly Single-Photon Interference, University of Rochester, Duality, Entanglement, and USA Delayed Choice Experiments 10:50-11:20 Xiaobo Zhu Genuine 12-Qubit Entanglement University of Science and on a Superconducting Quantum Technology, China Processor 11:20-11:50 Barry Garraway Dressed-atom potentials for University of Sussex, UK matter-wave interference 11:50-12:20 Anatoly Svidzinsky Excitation of cavity modes by a Texas A&M University, USA moving atom through virtual transitions May 24, Friday Afternoon Session I, Chairman: Hongxing Xu 13:30-14:00 Peter Nordlander Quantum Plasmonics and Rice University, USA Applications in Light Harvesting 14:00-14:30 Kohzo Hakuta Nanofiber Cavity-QED for University of Electro- Manipulating Single Photons Communications, Japan 14:30-15:00 Ed Fry Research Capabilities via an Texas A&M University, Ultrahigh Diffuse Reflecting Material USA 15:00-15:30 Coffee Break, Poster Session
    [Show full text]
  • Low Dimensional Quantum Magnetism in the Copper Oxides
    Le NO9900025 Low Dimensional Quantum Magnetism in the Copper Oxides Ora Entin-Wohlman and Amnon Aharony School of Physics and Astronomy, Tel Aviv University, Israel The magnetism of lamellar copper oxides, which are the parent mate- rials of high temperature superconductors, is dominated by the spin 1/2 Cu+2 ions on the CuC>2 planes. These planes have Cu ions on the vertices and O ions on the bonds of a square lattice, and their magnetic behavior at high temperature is described well by the planar quantum Heisenberg an- tiferromagnetic (AFM) model, which has long range order only at T=0. In fact they have three dimensional AFM order due to weak spin anisotropies and interplane couplings. Starting from a Hubbard model with spin orbit and Coulomb exchange couplings, we derive an effective magnetic Hamil- tonian which contains these anisotropies and couplings. An analysis of the zero point quantum spin wave energies generates additional four-fold sym- metry terms and delicate higher order interplane interactions, which help select a ground state among states which would otherwise be degenerate due to frustration. Having generated the full effective magnetic Hamiltonian, the results are used to identify the magnetic structures and competitions among them, leading to phase diagrams in parameter space. These are also used to discuss the critical phenomena which occur near various possible transitions. Specific attention will be devoted to the structures of tetrago- nal Sr2CuO2Cl2, Nd2CuC>4 and P^CuO^ In the former, frustration among layers is lifted by pseudodipolar interactions and by quantum zero point en- ergies. In the latter two, the rare earth also participates in the magnetism.
    [Show full text]
  • Frontiers of Quantum and Mesoscopic Thermodynamics (Online Conference) 18 - 24 July 2021, Prague, Czech Republic
    Frontiers of Quantum and Mesoscopic Thermodynamics (online conference) 18 - 24 July 2021, Prague, Czech Republic Under the auspicies of Prof. RNDr. Eva Zažímalová, CSc. President of the Czech Academy of Sciences Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Czech Academy of Sciences • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • College of Engineering and Science, University of Detroit Mercy, USA • Department of Physics, Texas A&M University, USA • Quantum Optics Lab at the BRIC, Baylor University, USA • Institut de Physique Théorique, CEA/CNRS Saclay, France Topics • Non-equilibrium quantum phenomena • Dissipation, dephasing and noise • Quantum statistical physics and thermodynamics • Foundations of quantum physics • Quantum measurement, entanglement and coherence • Many body physics, quantum field theory • Light matter interactions, quantum optics • Physics of quantum information and computing • Topological states of quantum matter, quantum phase transitions • Macroscopic quantum behavior • Atomic physics, cold atoms and molecules • Mesoscopic, nano-electromechanical and nano-optical systemss • Molecular motors, quantum heat engines • Biological systems • Cosmology, gravitation and astrophysics Scientific Committee Chair: Václav Špickaˇ (Institute of Physics, Czech Academy of Sciences, Prague) Co-Chair: Theo M. Nieuwenhuizen (University of Amsterdam) Raymond Dean Astumian (University
    [Show full text]