Fiber Optofluidic Technology Based on Optical Force and Photothermal

Total Page:16

File Type:pdf, Size:1020Kb

Fiber Optofluidic Technology Based on Optical Force and Photothermal micromachines Review Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects Chenlin Zhang 1, Bingjie Xu 1,*, Chaoyang Gong 2, Jingtang Luo 3, Quanming Zhang 3 and Yuan Gong 2,* 1 Science and Technology on Security Communication Laboratory, Institute of Southwestern Communication, Chengdu 610041, China 2 Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 3 State Grid Sichuan Economic Research Institute, Chengdu 610041, China * Correspondence: [email protected] (B.X.); [email protected] (Y.G.) Received: 25 May 2019; Accepted: 19 July 2019; Published: 26 July 2019 Abstract: Optofluidics is an exciting new area of study resulting from the fusion of microfluidics and photonics. It broadens the application and extends the functionality of microfluidics and has been extensively investigated in biocontrol, molecular diagnosis, material synthesis, and drug delivery. When light interacts with a microfluidic system, optical force and/or photothermal effects may occur due to the strong interaction between light and liquid. Such opto-physical effects can be used for optical manipulation and sensing due to their unique advantages over conventional microfluidics and photonics, including their simple fabrication process, flexible manipulation capability, compact configuration, and low cost. In this review, we summarize the latest progress in fiber optofluidic (FOF) technology based on optical force and photothermal effects in manipulation and sensing applications. Optical force can be used for optofluidic manipulation and sensing in two categories: stable single optical traps and stable combined optical traps. The photothermal effect can be applied to optofluidics based on two major structures: optical microfibers and optical fiber tips. The advantages and disadvantages of each FOF technology are also discussed. Keywords: optofluidics; optical force; photothermal effect; optical manipulation; optical fiber sensors 1. Introduction Optofluidics is a reconfigurable, sensitive, and portable technology that combines microfluidic systems and the optical systems [1]. Microfluidic technology makes an optofluidic system more reconfigurable because the liquid of microfluidics has a unique flexibility for solid materials. Optical technology can enhance the sensitivity of optofluidics by introducing new functionality and opto-physical effects and can work at very small sizes in microfluidic channels. As a result, with the integration of microfluidics and an optical system, optofluidics has become suitable for multiple applications, such as medical diagnosis and treatment, environmental analysis, and substance analysis [2]. Fiber optofluidic (FOF) technology is an important branch of optofluidics. As shown in Figure1, FOF has four major types of structures, the fiber-optic interferometer, fiber grating, microstructured optical fibers (MOFs), and optical micro/nano fibers. In practice, FOFs show several notable superiorities [3,4]. FOF devices are inexpensive and simple thanks to the mature manufacturing technology of optical fibers. An FOF system can easily couple light into a chip with channels at a submillimeter scale because of the tiny cross-section of optical fibers and can accurately interact Micromachines 2019, 10, 499; doi:10.3390/mi10080499 www.mdpi.com/journal/micromachines Micromachines 2019, 10, 499 2 of 25 Micromachines 2019, 10, x 2 of 25 withinteract liquid with samples liquid based samples on based its low on loss its transmission.low loss transmission. Additionally, Additionally, an FOF an system FOF system can improve can performanceimprove performance with the notable with the fabricability notable fabricabilit of its opticaly of fibers.its optical For fibers. example, For opticalexample, micro optical/nano fibersmicro/nano fabricated fibers with fabricated commercial with fiberscommercial can enhance fibers can the enhance sensitivity the ofsensitivity the environment of the environment through the evanescentthrough the field. evanescent Microstructured field. Microstructured optical fibers (MOFs)optical fibers can serve (MOFs) as both can lightserve transmission as both light and microfluidictransmission channels, and microfluidic due to their channels, specific due structures, to their specific such as structures, a suspended such core, as a a suspended hollow core, core, and a air claddinghollow [core,5]. and air cladding [5]. FigureFigure 1. 1.Fiber Fiber optofluidic optofluidic (FOF)(FOF) studiesstudies based on on the the structures structures of of (a ()a the) the fiber-optic fiber-optic interferometer, interferometer, (b)(b fiber) fiber grating, grating, (c ()c microstructured) microstructured optical optical fibers,fibers, andand (d) optical microfibers. microfibers. Fiber-opticFiber-optic interferometers interferometers cancan bebe divideddivided into several several major major categories categories according according to totheir their structures,structures, including including a a Fabry–Perot Fabry–Perot interferometerinterferometer (F (FPI),PI), whose whose interference interference is isbased based on on single single arm arm incidentincident laser laser oscillated oscillated in in a a cavity; cavity; andand Mach-Zehnder,Mach-Zehnder, Michelson, Michelson, and and Sagnac, Sagnac, whose whose interference interference occursoccurs via via a two-arm a two-arm optical optical laser laser split split from from the incident the incident laser [6laser]. The [6]. typical The structurestypical structures of fiber-optic of interferometersfiber-optic interferometers are summarized are summarized in Table1. in Table 1. AA Fabry–Perot Fabry–Perot interferometer interferometer (FPI) (FPI) can can be usedbe used for optofluidicfor optofluidic sensing sensing based based on either on either an extrinsic an orextrinsic intrinsic or cavity, intrinsic which cavity, is usually which fabricatedis usually fabricated with two parallelwith two mirrors, parallel as mirrors, shown as in shown Figure 1ina. Figure The FPI can1a. be The designed FPI can for be sensing designed with for highsensing performance with high byperformance filling the by special filling material the special or optimizing material or the mirrorsoptimizing of the the cavity. mirrors A high-visibility of the cavity. in-lineA high-visibility with the optofluidic in-line with Fabry–Perot the optofluidic cavity Fabry–Perot was demonstrated cavity bywas splicing demonstrated a silica capillary by splicing tube a silica into capillary two single tube mode into fibertwo single (SMFs) mode and fiber polishing (SMFs) the and latter polishing optical fibertheof latter the FPIoptical [7]. Refractivefiber of the index FPI [7]. detection Refractive with index a high detection sensitivity with of a 1148.93 high sensitivity nm/RIU wasof 1148.93 achieved nm/RIU was achieved thanks to the smooth end faces of the SMFs. Another sensing probe based on thanks to the smooth end faces of the SMFs. Another sensing probe based on FPI was fabricated by FPI was fabricated by sandwiching a cavity between the single mode fiber (SMF) facet and a Nafion sandwiching a cavity between the single mode fiber (SMF) facet and a Nafion film [8]. The results film [8]. The results indicated that Nafion could be used for temperature and humidity sensing. indicated that Nafion could be used for temperature and humidity sensing. Traditionally, two-arm interferometric structures, i.e., a Mach–Zehnder interferometer (MZI), a Traditionally, two-arm interferometric structures, i.e., a Mach–Zehnder interferometer (MZI), Michelson interferometer (MI), and a Sagnac interferometer (SI), are composed of two separate fibers a Michelson[6]. Recent interferometer studies show that (MI), these and two-arm a Sagnac interfer interferometerometric (SI),structures are composed can also ofbe twoimplemented separate fibers as an [6]. Recentin-line studies fiber optic show core-cladding-mode that these two-arm interferometricinterferometer, structuresand thus have can alsothe advantage be implemented of compactness, as an in-line fibersimplicity, optic core-cladding-mode easy alignment, interferometer,high coupling andefficiency, thus have high the advantagestability, and of compactness, low-cost. Two-arm simplicity, easyinterferometric alignment, structures high coupling are promising efficiency, for highmany stability, sensing applications, and low-cost. suchTwo-arm as label-free interferometric biosensing structures[9], humidity are promising sensing [10,11], for many temperature-immune sensing applications, refractive such index as label-free (RI) sensing biosensing [12,13], temperature [9], humidity sensingsensing [10 [14],,11], and temperature-immune pressure sensing [15,16]. refractive index (RI) sensing [12,13], temperature sensing [14], and pressure sensing [15,16]. Table 1. A summary of sensing application based on fiber-optic interferometer. Table 1. A summary of sensing application based on fiber-optic interferometer. Device Structures Applications Ref. TypesDevice Types Structures Applications Ref. Extrinsic/intrinsic RI sensing [7] FPI RI sensing [7] FPI Extrinsic/intrinsic cavity cavity TemperatureTemperature and and humidity humidity sensor sensor [8][8] Label-free biosensing [9] Waist-enlarged fiber Label-free biosensing [9] MZI/MIMZI /MI Waist-enlarged fiber taperTemperature-immuneTemperature-immune humi humiditydity sensing sensing [10[10,11],11] taper Temperature-immuneTemperature-immune RI RIsensing
Recommended publications
  • A Review of Single-Mode Fiber Optofluidics (Invited)
    This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/JSTQE.2015.2466071 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 A Review of Single-Mode Fiber Optofluidics (Invited) R. Blue, Member, IEEE, A. Duduś, and D. Uttamchandani, Senior Member, IEEE together with its ability to readily change its optical properties Abstract — We review the field we describe as “single-mode fiber are distinct advantages which promote the development of optofluidics” which combines the technologies of microfluidics SMF optofluidic devices. In general SMF devices can be with single-mode fiber optics for delivering new implementations classified into continuous fiber devices and fiber-gap devices. of well-known single-mode optical fiber devices. The ability of a This classification also extends to SMF optofluidic devices. In fluid to be easily shaped to different geometries plus the ability to this paper we review the full range of SMF optofluidic devices have its optical properties easily changed via concentration reported to date. Sections II and III examine the modifications changes or an applied electrical or magnetic field offers potential benefits such as no mechanical moving parts, miniaturization, required to the standard SMF to achieve interaction of a fluid increased sensitivity and lower costs. However, device fabrication with the guided light for both continuous fiber and fiber-gap and operation can be more complex than in established single- devices.
    [Show full text]
  • The Implementation of Optofluidic Microscopy On
    THE IMPLEMENTATION OF OPTOFLUIDIC MICROSCOPY ON A CHIP SCALE AND ITS POTENTIAL APPLICATIONS IN BIOLOGY STUDIES Thesis by Lap Man Lee In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2012 (Defended September 12th, 2011) ii © 2012 Lap Man Lee All Rights Reserved iii Acknowledgement The completion of my thesis is based on support and help from many individuals. First, I would like to express my gratitude to my PhD advisor Prof. Changhuei Yang for offering me a chance to work on an emerging research field of optofluidics and participate in the development of optofluidic microscopy (OFM), which leads to many successful results. His guidance has led the OFM project from an elegant engineering idea to reality. His enthusiasm and creativity in conducting academic research is forever young, motivating us to pursue excellence in our projects. I thank him for introducing me to biophotonics and allowing me to play a role in contributing to the field. I want to thank Prof. Yu-Chong Tai for being my thesis committee chair. His pioneering work in MEMS has always been my motivation to pursue something ‘big’ in the world of ‘small’. You will find yourself learning something new every time you interact with him, not only in science but also in life. I want to thank Prof. Chin-Lin Guo for the discussion after the committee meeting. I find his advice very useful. I am thankful for suggestions from Prof. Azita Emami, which made my PhD work more complete. I also acknowledge my candidacy committee members, Prof.
    [Show full text]
  • COLL Abstracts
    COLL 1 Cytosolic internalization of luminescent quantum dots Hedi M. Mattoussi1, [email protected], Anshika Kapur1, Goutam Palui1, Wentao Wang1, Scott Medina2, Joel Schneider2. (1) Chem Biochem, Florida State University, Tallahassee, Florida, United States (2) Center for Cancer Research, National Cancer Institute, , Frederick, Maryland, United States The remarkable progress made over the past two decades to grow inorganic nanomaterials, combined with careful surface functionalization strategies offer an opportunity to develop novel platforms for use in molecular imaging and as diagnostic tools. A successful integration into biological systems requires devising strategies to promote their intracellular uptake while circumventing endocytosis. We report on the use of an amphiphilic anti-microbial peptide as means of promoting the cytosolic uptake of luminescent QDs. The peptide is synthesized with a terminal cysteine to allow conjugation onto QDs that have been coated with multifunctional metal-coordinating ligands. Using fluorescence imaging and flow cytometry we find that incubating cells with the QD-peptide leads to delivery into the cytoplasm without affecting the cellular morphology or viability. We observed a homogeneous distribution of QD staining throughout the cytoplasm and without co-localization with labelled endosomes. Additional experiments where endocytosis has been eliminated (such as pre-treatment with specific inhibitors) have shown minimal effects on the intracellular QD uptake. COLL 2 Influence of PEGyalation on the interaction of colloids with cells Wolfgang Parak1,2, [email protected]. (1) Universitaet Marburg, Marburg, Germany (2) CIC Biomagune, San Sebastian, Spain Several homologous nanoparticle libraries were synthesized in which inorganic nanoparticles (Au, FePt) were coated with polyethylene glycol (PEG).
    [Show full text]
  • Opto-Fluidic Manipulation of Microparticles and Related Applications
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-10-2020 Opto-Fluidic Manipulation of Microparticles and Related Applications Hao Wang University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biomedical Engineering and Bioengineering Commons Scholar Commons Citation Wang, Hao, "Opto-Fluidic Manipulation of Microparticles and Related Applications" (2020). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8601 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Opto-Fluidic Manipulation of Microparticles and Related Applications by Hao Wang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Engineering Department of Medical Engineering College of Engineering University of South Florida Major Professor: Anna Pyayt, Ph.D. Robert Frisina, Ph.D. Steven Saddow, Ph.D. Sandy Westerheide, Ph.D. Piyush Koria, Ph.D. Date of Approval: October 30, 2020 Key words: Thermal-plasmonic, Convection, Microfluid, Aggregation, Isolation Copyright © 2020, Hao Wang Dedication This dissertation is dedicated to the people who have supported me throughout my education. Great appreciation to my academic adviser Dr. Anna Pyayt who kept me on track. Special thanks to my wife Qun, who supports me for years since the beginning of our marriage. Thanks for making me see this adventure though to the end. Acknowledgments On the very outset of this dissertation, I would like to express my deepest appreciation towards all the people who have helped me in this endeavor.
    [Show full text]
  • Graduate Program in Materials Science and Engineering
    Interdisciplinary Faculty of Materials Science and Engineering Graduate Program in Materials Science and Engineering Materials Science and Engineering Graduate Program Self Study January 2012 1 Table of Contents List of Figures ................................................................................................................................................ 5 List of Tables ................................................................................................................................................. 6 1. INTRODUCTION ....................................................................................................................................... 7 1.1. Welcome ............................................................................................................................................ 7 1.2. Charge to the Review Team .............................................................................................................. 8 1.3. Itinerary and Contact Persons ........................................................................................................... 9 2. TEXAS A&M UNIVERSITY ..................................................................................................................... 11 2.1. The University System ..................................................................................................................... 11 2.2. Texas A&M University .....................................................................................................................
    [Show full text]
  • Study of Electrochemical Properties of Liquid Gallium
    University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 Study of electrochemical properties of liquid gallium Yuchen Chen University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Chen, Yuchen, Study of electrochemical properties of liquid gallium, Master of Philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong, 2017. https://ro.uow.edu.au/ theses1/14 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Optofluidic Lasers and Their Bio-Sensing Applications
    Optofluidic Lasers and Their Bio-sensing Applications by Wonsuk Lee A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2013 Doctoral Committee: Associate Professor Xudong Fan, Co-chair Professor L. Jay Guo, Co-chair Professor David T. Burke Associate Professor Pei-Cheng Ku © Wonsuk Lee 2013 TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... iv LIST OF TABLES .............................................................................................................x ABSTRACT ...................................................................................................................... xi CHAPTER I. Introduction ........................................................................................................1 1.1. Optofluidic laser ....................................................................................1 1.2. Optofluidic ring resonator .....................................................................3 1.3. DNA detection ......................................................................................5 1.4. Organization ..........................................................................................6 II. Tunable Single Mode Lasing from an On-chip Optofluidic Ring Resonator Laser ..............................................................................................7 2.1. Motivation .............................................................................................7
    [Show full text]
  • Nanoscale Mingsong Wang , Chenglong Zhao , Xiaoyu Miao , Yanhui Zhao , Joseph Rufo , Yan Jun Liu , * Tony Jun Huang , * and Yuebing Zheng *
    www.MaterialsViews.com Plasmofl uidics Plasmofl uidics: Merging Light and Fluids at the Micro-/ Nanoscale Mingsong Wang , Chenglong Zhao , Xiaoyu Miao , Yanhui Zhao , Joseph Rufo , Yan Jun Liu , * Tony Jun Huang , * and Yuebing Zheng * From the Contents 1. Introduction ........................................ 4424 P lasmofl uidics is the synergistic integration of 2. Plasmon-Enhanced Functionalities plasmonics and micro/nanofl uidics in devices and in Microfl uidics ....................................4424 applications in order to enhance performance. There has been signifi cant progress in the emerging fi eld of 3. Microfl uidics-Enhanced Plasmonic plasmofl uidics in recent years. By utilizing the capability Devices ................................................ 4433 of plasmonics to manipulate light at the nanoscale, 4. Summary and Perspectives ..................4440 combined with the unique optical properties of fl uids and precise manipulation via micro/nanofl uidics, plasmofl uidic technologies enable innovations in lab-on- a-chip systems, reconfi gurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofl uidics are examined and categorized into plasmon-enhanced functionalities in microfl uidics and microfl uidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fl uids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfl uidic principles to enable reconfi gurable plasmonic devices and performance- enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging fi eld of plasmofl uidics. small 2015, 11, No. 35, 4423–4444 © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 4423 reviews www.MaterialsViews.com 1.
    [Show full text]
  • Optofluidics : Experimental, Theoretical Studies and Modeling Noha Ali Aboulela Gaber
    Optofluidics : experimental, theoretical studies and modeling Noha Ali Aboulela Gaber To cite this version: Noha Ali Aboulela Gaber. Optofluidics : experimental, theoretical studies and modeling. Modeling and Simulation. Université Paris-Est, 2014. English. NNT : 2014PEST1076. tel-01207494 HAL Id: tel-01207494 https://tel.archives-ouvertes.fr/tel-01207494 Submitted on 1 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Mathématiques et Sciences et Technologies de l’Information et de la Communication (MSTIC) THÈSE Pour obtenir le grade de Docteur de l’Université Paris-Est Spécialité : Electronique, Optronique et Systèmes Présentée et soutenue publiquement par Noha ALI ABOULELA GABER Le 11 Septembre 2014 OPTOFLUIDIQUE Etudes expérimentales, théoriques et de modélisation OPTOFLUIDICS Experimental, theoretical studies and modeling Directeur de thèse Professeur Tarik BOUROUINA Professeur Elodie RICHALOT Document confidentiel : articles en cours de dépôt Jury Hans ZAPPE, Professeur, Université de Freiburg, Allemagne Rapporteur Agnès MAITRE, Professeur, Institut des Nanosciences de Paris INSP Rapporteur Diaa KHALIL, Professeur, Université d’Ain-Shams, Egypte Examinateur Dan ANGELESCU, Professeur, Université Paris-Est, ESIEE Paris Examinateur Elodie RICHALOT, Professeur, Université Paris-Est, UPEMLV Examinateur Tarik BOUROUINA, Professeur, Université Paris-Est, ESIEE Paris Examinateur © UPE Résumé RESUME Ce travail porte sur l’étude de propriétés optiques des fluides à échelle micrométrique.
    [Show full text]
  • Sciencedirect ‐ Zoznam E‐Kníh
    ScienceDirect ‐ zoznam e‐kníh Product ID Collection Year(s) Subject Collection Book Title Author(s) Imprint Division 978012372486 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Food Preservation Process Design Heldman, Dennis Academic Press ST 978012374928 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Hormones and Reproduction of Vertebrates Norris, David Academic Press ST 978012374929 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Hormones and Reproduction of Vertebrates Norris, David Academic Press ST 978012374930 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Hormones and Reproduction of Vertebrates Norris, David Academic Press ST 978012374931 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Hormones and Reproduction of Vertebrates Norris, David Academic Press ST 978012375009 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Hormones and Reproduction of Vertebrates Norris, David Academic Press ST 978012375021 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Molecular Wine Microbiology Carrascosa Santiago, Alfonso Academic Press ST 978012375688 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Nuts and Seeds in Health and Disease Prevention Preedy, Victor Academic Press ST 978012380886 2011 Agricultural, Biological, and Food Sciences 2011 (Elsevier and Woodhead) Flour and Breads and their Fortification
    [Show full text]
  • Air Force Institute of Technology Research Report 2019
    Air Force Institute of Technology AFIT Scholar AFIT Documents 5-2020 Air Force Institute of Technology Research Report 2019 Graduate School of Engineering and Management, Air Force Institute of Technology Follow this and additional works at: https://scholar.afit.edu/docs AFIT/EN/TR-20-01 TECHNICAL REPORT MAY 2020 Air Force Institute of Technology Research Report 2019 Period of Report: 1 Oct 2018 to 30 Sep 2019 Graduate School of Engineering and Management GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AIR FORCE BASE, OHIO Distribution Statement A. Approved for Public Release; Distribution Unlimited. AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio Reproduction of all or part of this document is authorized. This report was edited and produced by the Office of Research and Sponsored Programs, Graduate School of Engineering and Management, Air Force Institute of Technology. The Department of Defense, other federal government, and non-government agencies supported the work reported herein but have not reviewed or endorsed the contents of this report. For additional information, please call or Email: 937-255-3633 DSN 785-3633 [email protected] or visit the AFIT website: www.afit.edu ii Air Force Institute of Technology Research Report 2019 Foreword The Air Force Institute of Technology (AFIT) actively aligns our faculty and student research activities with national defense priorities to deliver dual purpose results: valuable educational experiences to enhance our graduates’ performance throughout their careers, and innovative solutions of importance to our sponsors. AFIT works closely with research sponsors from many Air Force and DOD organizations to identify high interest problems that match our faculty expertise and educational requirements to maximize value.
    [Show full text]
  • PIERS 2015 Prague
    PIERS 2015 Prague Progress In Electromagnetics Research Symposium Advance Program July 6–9, 2015 Prague, Czech Republic www.emacademy.org www.piers.org For more information on PIERS, please visit us online at www.emacademy.org or www.piers.org. PIERS 2015 Prague Program CONTENTS TECHNICALPROGRAMSUMMARY . ......... 4 THEELECTROMAGNETICSACADEMY. ........... 11 JOURNAL: PROGRESS IN ELECTROMAGNETICS RESEARCH . ......... 11 PIERS2015PRAGUEORGANIZATION . ............ 12 PIERS 2015 PRAGUE SESSION ORGANIZERS . .......... 14 PIERS 2015 PRAGUE ORGANIZERS AND SPONSORS . ......... 14 PIERS2015PRAGUEEXHIBITORS . ............. 14 MAPOFCONFERENCESITE ................................... ........ 15 SYMPOSIUMVENUE ........................................ ........ 17 REGISTRATION ......................................... .......... 17 SPECIALEVENTS ....................................... ........... 17 PIERSONLINE ......................................... ........... 17 GUIDELINEFORPRESENTERS............................... ........... 18 GENERALINFORMATION ................................... .......... 19 PIERS 2015 PRAGUE TECHNICAL PROGRAM . ............ 20 3 Progress In Electromagnetics Research Symposium TECHNICAL PROGRAM SUMMARY Monday AM, July 6, 2015 1A1a FocusSession.SC2: Planar Optics Based on Metasurfaces 1 ................................................. 20 1A1b Oral Presentations for Best Student Paper Awards — SC2: Metamaterials, Plasmonics and Complex Media ...........................................................................................................
    [Show full text]