Download Complete Work
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Australian Journal of Earth Sciences Paleosol Record of Neogene Climate
This article was downloaded by: [Retallack, Gregory J.][University of Oregon] On: 28 September 2010 Access details: Access Details: [subscription number 917394740] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Australian Journal of Earth Sciences Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t716100753 Paleosol record of Neogene climate change in the Australian outback C. A. Metzgera; G. J. Retallacka a Department of Geological Sciences, University of Oregon, Eugene, OR, USA Online publication date: 24 September 2010 To cite this Article Metzger, C. A. and Retallack, G. J.(2010) 'Paleosol record of Neogene climate change in the Australian outback', Australian Journal of Earth Sciences, 57: 7, 871 — 885 To link to this Article: DOI: 10.1080/08120099.2010.510578 URL: http://dx.doi.org/10.1080/08120099.2010.510578 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
BEER'i\I'bones Volume1 Lssue2 APRITJ-Gg7
BEER'I\I'BONES Volume1 lssue2 APRITJ-gg7 'thc with grxld cornpliny, is like a little chnmtrr, across crevit\sc', irtLr-! \)l f,ii.r.ii.u. liciiiirrirr,.;li,ri titrrvii u sit;1;e,.iiurig .l J)aisu!e. 'louge' llessage from the ,\lcrxrllri dorvn thc iltd into the President Iror tltose ot vou c()nternpllting tirssil chiunber. This may sound daunting but Gav has c'llrckedttre 'The Y V elcorneback tirr frorn 1997. minuteon Run". This cave was tust oprned in the Hope you all h:rd a grxxt breali. sixties with the aid of a smiill Things are looking gcxrrltor 1997 blast or two and wa.stbund to bc with the KI tnp plannedand only relatively uruemarlelbie as t'nr as needing those tlrrt {iIIe string trl cave tbrmation was cclnce-med.It pay Lyndlee betirre 9th April or lvAS subsequently used ils a tiey wlll miss out. If Iou now training cave. In 199i. cavie anl L'itn't corne tirr whatcver rcllsorr iunateur palaeontol0gist Lurds"rv also tell Lyndlee or \!e mlrv get Hatchernoticed that the urverskrj stuck paying tor those thut tion't been walking straight through a rum up. Sthenurus skeleton, md (rvith \!'ell, enough from me. I'm sure permission) conducted a the rest of the nervsletter is preliminary snartrng, er. I meirr temptingyou so havea gotx1reud. testdig. However.if it rvlusn'ttbr this, the cave wouid.never huve Jts Colrner Pre-tident cornc to tie attention of ex;rn palaeontologist.Gavin Prideau.x. Kangaroo Island Dig. The imgrruurce of the nc!'v The big is tlrst the trlp to i\lcrxrta thls yelr. -
BIOLOGICAL SURVEY of KANGAROO ISLAND SOUTH AUSTRALIA in NOVEMBER 1989 and 1990
A BIOLOGICAL SURVEY OF KANGAROO ISLAND SOUTH AUSTRALIA IN NOVEMBER 1989 and 1990 Editors A. C. Robinson D. M. Armstrong Biological Survey and Research Section Heritage and Biodiversity Division Department for Environment, Heritage and Aboriginal Affairs, South Australia 1999 i Kangaroo Island Biological Survey The Biological Survey of Kangaroo Island, South Australia was carried out with the assistance of funds made available by, the Commonwealth of Australia under the 1989-90 National Estate Grants Programs and the State Government of South Australia. The views and opinions expressed in this report are those of the authors and do not necessarily represent the views or policies of the Australian Heritage Commission or the State Government of South Australia. The report may be cited as: Robinson, A. C. & Armstrong, D. M. (eds) (1999) A Biological Survey of Kangaroo Island, South Australia, 1989 & 1990. (Heritage and Biodiversity Section, Department for Environment, Heritage and Aboriginal Affairs, South Australia). Copies of the report may be accessed in the library: Environment Australia Department for Environment, Heritage and Aboriginal Affairs GPO Box 636 or 1st Floor, Roma Mitchell House CANBERRA ACT 2601 136 North Terrace, ADELAIDE SA 5000 EDITORS A.C. Robinson, D.M. Armstrong, Biological Survey and Research, Heritage &Biodiversity Section, Department for Environment Heritage and Aboriginal Affairs PO Box 1047 ADELAIDE 5001 AUTHORS D M Armstrong, P.J.Lang, A C Robinson, Biological Survey and Research, Heritage &Biodiversity Section, Department for Environment, Heritage and Aboriginal Affairs PO Box 1047 ADELAIDE 5001 N Draper, Australian Cultural Heritage Management Pty Ltd, 53 Hackney Rd. HACKNEY, SA 5069 G Carpenter, Biodiversity Monitoring and Evaluation, Heritage &Biodiversity Section, Department for Environment Heritage and Aboriginal Affairs. -
Marsupial Fossils from Wellington Caves, New South Wales; the Historic and Scientific Significance of the Collections in the Australian Museum, Sydney
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Dawson, Lyndall, 1985. Marsupial fossils from Wellington Caves, New South Wales; the historic and scientific significance of the collections in the Australian Museum, Sydney. Records of the Australian Museum 37(2): 55–69. [1 August 1985]. doi:10.3853/j.0067-1975.37.1985.335 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1985) Vo!. 37(2): 55-69. ISSN·1975·0067. 55 Marsupial Fossils from Wellington Caves, New South Wales; the Historic and Scientific Significance of the Collections in the Australian Museum, Sydney LYNDALL DAWSON School of Zoology, University of New South Wales, Kensington, N.S.W., 2033 ABSTRACT. Since 1830, fossil vertebrates, particularly marsupials, have been collected from Wellington Caves, New South Wales. The history of these collections, and particularly of the collection housed in the Australian Museum, Sydney, is reviewed in this paper. A revised faunal list of marsupials from Wellington Caves is included, based on specimens in mUSeum collections. The provenance of these specimens is discussed. The list comprises 58 species, of which 30 are extinct throughout Australia, and a further 12 no longer inhabit the Wellington region. The deposit also contains bones of reptiles, birds, bats, rodents and monotremeS. On the basis of faunal correlation and some consideration of taphonomy in the deposits, the age range of the fossils represented in the mUSeum collections is suggested to be from the late Pliocene to late Pleistocene (with a possible minimum age of 40,000 years BP). -
Wanburoo Hilarus Gen. Et Sp. Nov., a Lophodont Bulungamayine Kangaroo
Records of the Western Australian Museum Supplement No. 57: 239-253 (1999). Wanburoo hilarus gen. et sp. nov., a lophodont bulungamayine kangaroo (Marsupialia: Macropodoidea: Bulungamayinae) from the Miocene deposits of Riversleigh, northwestern Queensland Bernard N. Cooke School of Life Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001; email: [email protected] and, School of Biological Science, University of New South Wales, Sydney, NSW 2052 Abstract - Wanburoo hi/ants gen. et sp. novo is described on the basis of specimens recovered from a number of Riversleigh sites ranging in estimated age from early Middle Miocene to early Late Miocene. The new species is characterized by low-crowned, lophodont molars in which hypolophid morphology clearly indicates bulungamayine affinity. The relatively close temporal proximity and lophodont molar morphology of the new species invites comparison with the Late Miocene macropodids, Dorcopsoides fossilis and Hadronomas puckridgi. While there is a number of phenetic similarities between the species, many of these appear to be symplesiomorphic. However, a number of apomorphies are suggested as indicating a phylogenetic relationship between the new species and early, non-balbarine macropodids represented by D. fossilis and H. puckridgi. Of these two taxa, the relationship appears stronger with Hadronomas than with Dorcopsoides. Balbarine-like characters present in Dorcopsoides are likely plesiomorphic or the result of convergence. While bulungamayines are herein regarded as more likely than balbarines to be ancestral to macropodids, the possibility of a diphyletic origin for macropodids cannot be dismissed. The suggested relationship between bulungamayines and macropodids casts doubt on the inclusion of Bulungamayinae within Potoroidae. -
Limb Bone Scaling in Hopping Macropods and Quadrupedal
Limb bone scaling in hopping macropods and rsos.royalsocietypublishing.org quadrupedal artiodactyls 1,2,3 2 Research Michael Doube , Alessandro A. Felder , Melissa Y. Chua1, Kalyani Lodhia2, Michał M. Kłosowski1, Cite this article: Doube M, Felder AA, Chua MY, Lodhia K, Kłosowski MM, Hutchinson JR, John R. Hutchinson4 and Sandra J. Shefelbine1,5 Shefelbine SJ. 2018 Limb bone scaling in 1Department of Bioengineering, Imperial College London, London SW7 2AZ, UK hopping macropods and quadrupedal 2Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London artiodactyls. R. Soc. open sci. 5: 180152. NW1 0TU, UK http://dx.doi.org/10.1098/rsos.180152 3Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 4Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK 5Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Received: 30 January 2018 Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA Accepted: 24 September 2018 MD, 0000-0002-8021-8127; AAF, 0000-0003-3510-9906; JRH, 0000-0002-6767-7038; SJS, 0000-0002-4011-9044 Bone adaptation is modulated by the timing, direction, rate Subject Category: and magnitude of mechanical loads. To investigate whether Biology (whole organism) frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb Subject Areas: bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping evolution/biomechanics (suborder Macropodiformes; kangaroos and kin) and quadrupedal galloping (order Artiodactyla; goats, deer and Keywords: kin). Forelimb and hindlimb bones were collected from 20 bone, anatomy, scaling, bipedal hopping, artiodactyl and 15 macropod species (body mass M 1.05– Macropodiformes, Artiodactyla 1536 kg) and scanned in computed tomography or X-ray microtomography. -
On the Evolution of Kangaroos and Their Kin (Family Macropodidae) Using Retrotransposons, Nuclear Genes and Whole Mitochondrial Genomes
ON THE EVOLUTION OF KANGAROOS AND THEIR KIN (FAMILY MACROPODIDAE) USING RETROTRANSPOSONS, NUCLEAR GENES AND WHOLE MITOCHONDRIAL GENOMES William George Dodt B.Sc. (Biochemistry), B.Sc. Hons (Molecular Biology) Principal Supervisor: Dr Matthew J Phillips (EEBS, QUT) Associate Supervisor: Dr Peter Prentis (EEBS, QUT) External Supervisor: Dr Maria Nilsson-Janke (Senckenberg Biodiversity and Research Centre, Frankfurt am Main) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Science and Engineering Faculty Queensland University of Technology 2018 1 Keywords Adaptive radiation, ancestral state reconstruction, Australasia, Bayesian inference, endogenous retrovirus, evolution, hybridization, incomplete lineage sorting, incongruence, introgression, kangaroo, Macropodidae, Macropus, mammal, marsupial, maximum likelihood, maximum parsimony, molecular dating, phylogenetics, retrotransposon, speciation, systematics, transposable element 2 Abstract The family Macropodidae contains the kangaroos, wallaroos, wallabies and several closely related taxa that occupy a wide variety of habitats in Australia, New Guinea and surrounding islands. This group of marsupials is the most species rich family within the marsupial order Diprotodontia. Despite significant investigation from previous studies, much of the evolutionary history of macropodids (including their origin within Diprotodontia) has remained unclear, in part due to an incomplete early fossil record. I have utilized several forms of molecular sequence data to shed -
The Chinchilla Local Fauna: an Exceptionally Rich and Well-Preserved Pliocene Vertebrate Assemblage from Fluviatile Deposits of South-Eastern Queensland, Australia
The Chinchilla Local Fauna: An exceptionally rich and well-preserved Pliocene vertebrate assemblage from fluviatile deposits of south-eastern Queensland, Australia JULIEN LOUYS and GILBERT J. PRICE Louys, J. and Price, G.J. 2015. The Chinchilla Local Fauna: An exceptionally rich and well-preserved Pliocene verte- brate assemblage from fluviatile deposits of south-eastern Queensland, Australia. Acta Palaeontologica Polonica 60 (3): 551–572. The Chinchilla Sand is a formally defined stratigraphic sequence of Pliocene fluviatile deposits that comprise interbed- ded clay, sand, and conglomerate located in the western Darling Downs, south-east Queensland, Australia. Vertebrate fossils from the deposits are referred to as the Chinchilla Local Fauna. Despite over a century and a half of collection and study, uncertainties concerning the taxa in the Chinchilla Local Fauna continue, largely from the absence of stratigraph- ically controlled excavations, lost or destroyed specimens, and poorly documented provenance data. Here we present a detailed and updated study of the vertebrate fauna from this site. The Pliocene vertebrate assemblage is represented by at least 63 taxa in 31 families. The Chinchilla Local Fauna is Australia’s largest, richest and best preserved Pliocene ver- tebrate locality, and is eminently suited for palaeoecological and palaeoenvironmental investigations of the late Pliocene. Key words: Mammalia, Marsupialia, Pliocene, Australia, Queensland, Darling Downs. Julien Louys [[email protected]], Department of Archaeology and Natural History, School of Culture, History, and Languages, ANU College of Asia and the Pacific, The Australian National University, Canberra, 0200, Australia. Gilbert J. Price [[email protected]], School of Earth Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia. -
FIELDIANA Geology
FIELDIANA Geology Publistied by Field Museum of Natural History New Series, No. 8 THE FAMILIES AND GENERA OF MARSUPIALIA LARRY G.MARSHALL •.981 UBRARY FIELD m^cim July 20, 1981 Publication 1320 THE FAMILIES AND GENERA OF MARSUPIALIA FIELDIANA Geology Published by Field Museum of Natural History New Series, No. 8 THE FAMILIES AND GENERA OF MARSUPIALIA LARRY G.MARSHALL Assistant Curator of Fossil Mammals DqMirtment of Geology Field Museum of Natural History Accepted for publication August 6, 1979 July 20, 1981 Publication 1320 Library of Congress Catalog No.: 81-65225 ISSN 0096-2651 PRINTED IN THE UNITED STATES OF AMERICA CONTENTS Part A 1 i^4troduc^on 1 Review of History and Development of Marsupial Systematics 1 Part B 19 Detailed Classification of Families and Genera of Marsupialia 19 I. New World and European Marsupialia 19 Fam. Didelphidae 19 Subfam. Dideiphinae 19 Subfam. Caluromyinae 21 *Subfam. Glasbiinae 21 *Subfam. Caroloameghiniinae 21 •Fam. Sparassocynidae 21 •Fam. Pediomyidae 21 Fam. Microbiotheriidae 21 •Fam. Stagodonddae 22 •Fam. Borhyaenidae 22 •Subfam. Hathlyacyninae 22 •Subfam. Borhyaeninae 23 •Subfam. Prothylacyninae 23 •Subfam. Proborhyaeninae 23 •Fam. Thylacosmilidae 23 •Fam. Argyrolagidae 24 Fam. Caenolesddae 24 Subfam. Caenolestinae 24 Tribe Caenolestini 24 •Tribe Pichipilini 24 •Subfam. Palaeothentinae 24 •Subfam. Abderitinae 25 •Tribe Parabderitini 25 •Tribe Abderitini 25 •Fam. Polydolopidae 25 •Fam. Groeberiidae 25 Marsupialia incertae sedis 25 Marsupialia(?) 25 II. Australasian Marsupialia 26 Fam. Dasyuridae 26 Subfam. Dasyurinae 26 Tribe Dasyurini 26 Tribe Sarcophilini 26 Fam. Myrmecobiidae 27 •Fam. Thylacinidae 27 Fam. Peramelidae 27 Fam. Thylacomyidae 27 Fam. Notoryctidae 27 Fam. Phalangeridae 27 Subfam. Phalangerinae 27 Subfam. Trichosurinae 28 •Fam. -
Download Full Article 1.5MB .Pdf File
https://doi.org/10.24199/j.mmv.1973.34.03 9 May 1973 FOSSIL VERTEBRATE FAUNAS FROM THE LAKE VICTORIA REGION, S.W. NEW SOUTH WALES, AUSTRALIA By Larry G. Marshall Zoology Department, Monash University, Victoria* Abstract Fossil vertebrate localities and faunas in the Lake Victoria region of S.W. New South Wales, Australia, are described. The oldest fossil bearing deposit, the late Pliocene or early Pleistocene Moorna Formation and associated Chowilla Sand have yielded specimens of Neoceratodus sp., Emydura macquarrii, several species of small dasyurid, specimens of Glaucodon cf. G. ballaratensis, a species of Protemnodon which compares closely with P. cf. P. otibandus from the late Pliocene or early Pleistocene Chinchilla Sand in SE. Queensland, specimens of Lagostrophus cf L. fasciatus, species of Petrogale, Macropus, Osphranter, Sthenurus, Bettongia, Diprotodon, Lasiorhinus, a peramelid, at least two species of pseudomyine rodents and a species of Rattus cf. R. lutreolus. It is shown that the holotype of Zygomaturus victoriae (Owen) 1872 may have been collected from these sediments. The late Pliocene or early Pleistocene Blanchetown Clay has yielded species of Neoceratodus, Thylacoleo, Phas- colonus, Bettongia, Sthenurus, a diprotodontid, and a rodent. The late Pleistocene Rufus Formation has yielded species of Dasycercus, Sarcophilus, Thylacinus, Phascolonus, Lasiorhinus, Bettongia, Procoptodon, Onychogalea, Macropus, and Leporillus. A large species of macropod and a species of Phascolonus were collected from the late Pleistocene Monoman Formation. The lunette on the E. side of Lake Victoria has yielded a large, diverse fauna of late Pleistocene —Holocene age, that includes such extinct species as Protemnodon anak, P. brehus, Procoptodon goliah, Sthenurus andersoni, S. -
Supplementary Methods S1
1 Validation methods for trophic niche models 2 3 To assign links between nodes (species), we used trophic niche-space models (e.g., [1]). 4 Each of these models has two quantile regressions that define the prey-size range a 5 predator of a given size is predicted to consume. Species whose body mass is within the 6 range of a predator’s prey size, as identified by the trophic niche-space model, are predicted 7 to be prey, while those outside the range are predicted not to be eaten. 8 9 The broad taxonomy of a predator helps to predict predation interactions [2]. To optimize 10 our trophic niche-space model, we therefore tested whether including taxonomic class of 11 predators improved the fit of quantile regressions. Using trophic (to identify which species 12 were predators), body mass, and taxonomic data, we fitted and compared five quantile 13 regression models (including a null model) to the GloBI data. In each model, we log10- 14 transformed the dependent variable prey body mass, and included for the independent 15 variables different combinations of log10-transformed predator body mass, predator class, 16 and the interaction between these variables (Supplementary Table S4). We log10- 17 transformed both predator and prey body mass to linearize the relationship between these 18 variables. We fit the five quantile regressions to the upper and lower 5% of prey body mass, 19 and compared model fits using the Bayesian information criterion (BIC). The predator body 20 mass*predator class model fit the 95th quantile data best, whereas the predator body mass 21 + predator class model fit the 5th quantile data marginally better than the aforementioned 22 interaction model (Supplementary Figure S2, Supplementary Table S4). -
A Survey of Cenozoic Mammal Baramins
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 217-221 Article 43 2018 A Survey of Cenozoic Mammal Baramins C Thompson Core Academy of Science Todd Charles Wood Core Academy of Science Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Thompson, C., and T.C. Wood. 2018. A survey of Cenozic mammal baramins. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 217–221. Pittsburgh, Pennsylvania: Creation Science Fellowship. Thompson, C., and T.C. Wood. 2018. A survey of Cenozoic mammal baramins. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 217–221, A1-A83 (appendix). Pittsburgh, Pennsylvania: Creation Science Fellowship. A SURVEY OF CENOZOIC MAMMAL BARAMINS C. Thompson, Core Academy of Science, P.O. Box 1076, Dayton, TN 37321, [email protected] Todd Charles Wood, Core Academy of Science, P.O. Box 1076, Dayton, TN 37321, [email protected] ABSTRACT To expand the sample of statistical baraminology studies, we identified 80 datasets sampled from 29 mammalian orders, from which we performed 82 separate analyses.