DOI: 10.1126/Science.1139247 , 222 (2007); 316 Science Et Al. Consortium, Rhesus Macaque Genome Sequencing and Analysis Rhesus M

Total Page:16

File Type:pdf, Size:1020Kb

DOI: 10.1126/Science.1139247 , 222 (2007); 316 Science Et Al. Consortium, Rhesus Macaque Genome Sequencing and Analysis Rhesus M Evolutionary and Biomedical Insights from the Rhesus Macaque Genome Rhesus Macaque Genome Sequencing and Analysis Consortium, et al. Science 316, 222 (2007); DOI: 10.1126/science.1139247 The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 13, 2007 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/316/5822/222 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/316/5822/222/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/316/5822/222#related-content This article cites 67 articles, 34 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/316/5822/222#otherarticles on April 13, 2007 This article has been cited by 3 articles hosted by HighWire Press; see: http://www.sciencemag.org/cgi/content/full/316/5822/222#otherarticles This article appears in the following subject collections: Genetics http://www.sciencemag.org/cgi/collection/genetics Information about obtaining reprints of this article or about obtaining permission to reproduce www.sciencemag.org this article in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright c 2007 by the American Association for the Advancement of Science; all rights reserved. The title SCIENCE is a registered trademark of AAAS. The Rhesus Macaque Genome ognized as a loss in the chimpanzee if it is RESEARCH ARTICLE present in the macaque, or it can be recognized as a gain in the human if it is absent in macaque. In principle, this three-way comparison should Evolutionary and Biomedical Insights make it possible to pinpoint many changes and identify specific underlying mutational mecha- from the Rhesus Macaque Genome nisms, which could have been critically impor- tant during the past 25 million years in shaping Rhesus Macaque Genome Sequencing and Analysis Consortium*† the biology of the three primate species. We examined the basic elements of the rhesus The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the macaque genome and undertook reconstruction ancestors of Homo sapiens about 25 million years ago. Because they are genetically and of the major changes in the human-chimpanzee– physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in rhesus macaque (HCR) trio. The regions of the basic and applied biomedical research. We determined the genome sequence of an Indian-origin genome that were duplicated in macaque were Macaca mulatta female and compared the data with chimpanzees and humans to reveal the then identified and correlated with other ge- structure of ancestral primate genomes and to identify evidence for positive selection and lineage- nome features. Individual macaque genes were specific expansions and contractions of gene families. A comparison of sequences from individual studied, and the orthologous genes in the HCR animals was used to investigate their underlying genetic diversity. The complete description of the trio were aligned to reveal evidence for the ac- macaque genome blueprint enhances the utility of this animal model for biomedical research and tion of selection on individual loci. Additional improves our understanding of the basic biology of the species. animals from other populations were also sampledbyDNAsequencingtostudytheir hesus macaques (Macaca mulatta)(1) to research, but the rhesus macaque has been genetic diversity. Throughout, complementary are one of the most frequently en- used most widely. Taxonomists recognize six methods were applied and the different results countered and thoroughly studied of all M. mulatta subspecies (1), which differ substan- combined in order to represent the most com- R on April 13, 2007 nonhuman primates (table S1.1). They have a tially in their geographical range, body size, and a plete picture of macaque biology. For a visual broad geographic distribution that reaches from variety of morphological, physiological, and be- representation of some of the insights gained Afghanistan and India across Asia to the havioral characteristics. North American research from the genome and more information about Chinese shore of the Pacific Ocean. As an Old colonies include animals representing both Indian the importance of the macaque as a model World monkey (superfamily Cercopithecoidea, and Chinese subspecies, although India ended the organism, see the poster in this issue (6). family Cercopithecidae), this species is closely exportation of these animals in the 1970s. related to humans and shares a last common With the advent of whole-genome sequenc- Sequencing the Genome ancestor from about 25 million years ago (Mya) ing, a highly accurate human genome sequence To generate a draft genome sequence for the (2). The two species often live in close associa- and a draft of the chimpanzee genome have rhesus macaque, whole-genome shotgun tion, and macaques exhibit complex and in- been generated and compared. The chimpanzee sequences were assembled. The bulk of the www.sciencemag.org tensely social behavioral repertoires. shared a common ancestor with humans ap- sequencing used DNA from a single M. mulatta The relationship between humans and ma- proximately 6 Mya (4, 5), and the major impact female, whereas DNA from an unrelated male caques is even more important because biomedical of the chimpanzee genome sequence data has was used to construct a bacterial artificial chro- research has come to depend on these primates been in their direct comparison with data from mosome (BAC) library to provide BAC end as animal models. Compared with rodents, which the human genome. However, the chimpanzee sequences and to aid in selective finishing. We are separated from humans by more than 70 data have major limitations. First, because the million years (2, 3), macaques exhibit greater alignable sequence is only 1 to 2% different Downloaded from similarity to human physiology, neurobiology, from that of the human, there is no informative HCR Ancestor and susceptibility to infectious and metabolic “signal” to distinguish conserved elements from diseases. Critical progress in biomedicine the overall high background level of conserva- 25 Mya attributed to macaques includes the identifica- tion. This is exacerbated by the fact that the 43 tion of the “rhesus factor” blood groups and chimpanzee genome was an incomplete draft, advances in neuroanatomy and neurophysiol- containing sequence errors that could potentially HC Ancestor ogy. Most important, their response to infectious mask true divergence. Second, the differences ~6 Mya agents related to human pathogens, including that are found between humans and chimpan- simian immunodeficiency virus and influenza, zees are difficult to assign as specific to either 5 14 has made macaques the preferred model for the chimpanzee or the human. As a result, the vaccine development. Lesser-known contribu- chimpanzee analyses have on their own provided tions of these animals include their early use in relatively few answers to the fundamental ques- humanchimpanzee macaque the U.S. space program—a rhesus monkey was tion of the nature of the specific molecular launched into space more than a dozen years changes that make us human. before any chimpanzee. By contrast, the genome of the rhesus ma- The cynomolgus macaque (M. fascicularis), caque has diverged farther from our own, with an pigtailed macaque (M. nemestrina), and Japa- average human-macaque sequence identity of Fig. 1. Evolutionary triangulation in the hu- nese macaque (M. fuscata) have all contributed ~93%. Figure 1 shows the inferred common an- man, chimpanzee and rhesus macaque lineages cestor for all three species, as well as a common (lineage-specific breaks), showing a summary of *To whom correspondence should be addressed. Richard A. Gibbs, E-mail: [email protected] ancestor that predated the human-chimpanzee chromosomal breakpoints on a microscopic scale †All authors with their contributions and affiliations appear divergence. A characteristic that is found in (Fig. 3) (7). Circled numbers indicate numbers of at the end of this paper. humans but not in the chimpanzee can be rec- lineage-specific breaks. 222 13 APRIL 2007 VOL 316 SCIENCE www.sciencemag.org SPECIALSECTION used several whole-genome shotgun libraries point. The human map was also used to help and the XY sex chromosomes. With the ex- with different insert sizes (~3.0, 10, 35, and place large merged scaffolds onto the ma- ception of 48 breakpoints (Fig. 1)—including 180 kb) to generate a total of 18.4 Gb of raw caque chromosomes (8, 9) [the chromosome three fusions, one fission, and breakpoints DNA sequence through standard fluorescent numbering of Rogers et al.(8) was used] at the induced by inversions that are each detectable Sanger sequencing technologies. Initial assemblies highest level of the assembly process. Given through chromosome staining, by radiation hy- to the intermediate scaffold stage were carried out that the human data were only used to split brid mapping, or by comparative linkage map- by
Recommended publications
  • Multistage Analysis of Variants in the Inflammation Pathway and Lung Cancer Risk in Smokers
    Published OnlineFirst May 9, 2012; DOI: 10.1158/1055-9965.EPI-12-0352-T Cancer Epidemiology, Research Article Biomarkers & Prevention Multistage Analysis of Variants in the Inflammation Pathway and Lung Cancer Risk in Smokers Margaret R. Spitz1, Ivan P. Gorlov2, Qiong Dong3, Xifeng Wu3, Wei Chen4, David W. Chang3, Carol J. Etzel3, Neil E. Caporaso5, Yang Zhao8, David C. Christiani8, Paul Brennan9, Demetrius Albanes7, Jianxin Shi6, Michael Thun10, Maria Teresa Landi5, and Christopher I. Amos4 Abstract Background: Tobacco-induced lung cancer is characterized by a deregulated inflammatory microenviron- ment. Variants in multiple genes in inflammation pathways may contribute to risk of lung cancer. Methods: We therefore conducted a three-stage comprehensive pathway analysis (discovery, replication, and meta-analysis) of inflammation gene variants in ever-smoking lung cancer cases and controls. A discovery set (1,096 cases and 727 controls) and an independent and nonoverlapping internal replication set (1,154 cases and 1,137 controls) were derived from an ongoing case–control study. For discovery, we used an iSelect BeadChip to interrogate a comprehensive panel of 11,737 inflammation pathway single-nucleotide poly- morphisms (SNP) and selected nominally significant (P < 0.05) SNPs for internal replication. Results: There were six SNPs that achieved statistical significance (P < 0.05) in the internal replication data set with concordant risk estimates for former smokers and five concordant and replicated SNPs in current smokers. Replicated hits were further tested in a subsequent meta-analysis using external data derived from two published genome-wide association studies (GWAS) and a case–control study. Two of these variants (a BCL2L14 SNP in former smokers and an SNP in IL2RB in current smokers) were further validated.
    [Show full text]
  • Runx1 Gene in Acute Myeloid Leukemia: Expression Level Signifcance and Impact on Clinical Features
    Runx1 Gene in Acute Myeloid Leukemia: Expression Level Signicance and Impact on Clinical Features Fadwa Said Abdelazim Mohamed ( [email protected] ) Cairo University Roxan E Shak National Cancer Institute, Cairo University Naglaa M. Hassan National Cancer Institute, Cairo University Research article Keywords: Acute myeloid leukemia, RUNX1, mutation, gene expression, Egypt Posted Date: April 7th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-20926/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background Acute myeloid leukemia represents the highest percentage of all adult acute leukemia variants. Runt-related transcription factor1 (RUNX1), a transcription factor with a known tumor suppressor function was recently reported as a tumor promotor in AML. We investigated the role of RUNX1 geneexpression levelin Egyptian AML patients and delineateits clinical signicance. Methods This study recruited 91 AML patients that were recently diagnosed at our hospital with 14 healthy age- and sex-matched donors of bone marrow transplantation unit. We measured RUNX1 gene expression level using reverse transcription–quantitative polymerase chain reaction. Results We found that RUNX1 gene expression level was signicantly higher compared to the control group (p < 0.001). Patients with FLT3 mutations had the higher expression level of RUNX1 (p=0.023). The male patients expressed signicantly higher level of RUNX1 (p=0.046). Conclusion The RUNX1 gene expression may serve as a diagnostic marker in Egyptian AML patients. Its relation to FLT3 may give clue that patients carrying this mutation may benet fromnew treatments that target RUNX1 in the future.
    [Show full text]
  • Single Cell Mutational Profiling and Clonal Phylogeny in Cancer Nicola E
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press For GENOME RESEARCH (Methods) Single cell mutational profiling and clonal phylogeny in cancer Nicola E Potter – Institute of Cancer Research, UK Luca Ermini – Institute of Cancer Research, UK Elli Papaemmanuil – Wellcome Trust Sanger Institute, UK Giovanni Cazzaniga - Clinica Pediatrica, Italy Gowri Vijayaraghavan – Institute of Cancer Research, UK Ian Titley – Institute of Cancer Research, UK Anthony Ford – Institute of Cancer Research, UK Peter Campbell - Wellcome Trust Sanger Institute, UK Lyndal Kearney – Institute of Cancer Research, UK Mel Greaves – Institute of Cancer Research, UK Corresponding Author - Professor Mel Greaves FRS, Head, Haemato-Oncology Research Unit, Division of Molecular Pathology, Brookes Lawley Building, 15 Cotswold Road, Sutton, Surrey SM2 5NG T +44 (0)20 8722 4073 (direct) E [email protected] Running title: Genetic analysis of single cancer cells Keywords: Heterogeneity, Single cells, Cancer, Phylogeny 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The development of cancer is a dynamic evolutionary process in which intra-clonal, genetic diversity provides a substrate for clonal selection and a source of therapeutic escape. The complexity and topography of intra-clonal genetic architecture has major implications for biopsy-based prognosis and for targeted therapy. High depth, next generation sequencing (NGS) efficiently captures the mutational load of individual tumours or biopsies. But, being a snapshot portrait of total DNA, it disguises the fundamental features of sub-clonal variegation of genetic lesions and of clonal phylogeny. Single cell genetic profiling provides a potential resolution to this problem but methods developed to date all have limitations.
    [Show full text]
  • Expression of the POTE Gene Family in Human Ovarian Cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R
    www.nature.com/scientificreports OPEN Expression of the POTE gene family in human ovarian cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R. James3, Christina N. Kufel3, Austin Miller 4, Jane Meza5, Ronny Drapkin 6, Kunle Odunsi7,8,9, 2,10 1,2,3 Received: 5 July 2018 David Klinkebiel & Adam R. Karpf Accepted: 7 November 2018 The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA Published: xx xx xxxx expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specifc expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed signifcantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifcally associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had signifcantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confrmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Oncogene Associated Cdna Microarray Analysis Shows PRAME
    J Clin Exp Hematopathol Vol. 49, No. 1, May 2009 Original Article Oncogene Associated cDNA Microarray Analysis Shows PRAME Gene Expression is a Marker for Response to Anthracycline Containing Chemotherapy in Patients with Diffuse Large B-cell Lymphoma Riko Kawano,1,3) Kennosuke Karube,3) Masahiro Kikuchi,2) Morishige Takeshita,2) Kazuo Tamura,1) Naokuni Uike,4) Tetsuya Eto,5) Koichi Ohshima,3) and Junji Suzumiya1,6) CHOP (cyclophosphamide, adriamycin, vincristine, and prednisolone) therapy achieves a response in more than 60% patients with diffuse large B-cell lymphomas (DLBCLs). However, DLBCL shows a heterogeneous response to chemotherapy, and some patients are refractory to CHOP therapy. This difference in response to therapy is most likely due to differences in biological characteristics. We used cDNA microarray analysis to identify genes differentially expressed in anthracycline containing chemotherapy-resistant DLBCLs (7 patients) compared with anthracycline containing chemotherapy-sensitive DLBCLs (6 patients). Nine genes on the cDNA chip showed increased expression in anthracycline containing chemotherapy- resistant patients. We chose the preferentially expressed antigen of melanoma (PRAME) gene because it showed the highest expression in anthracycline containing chemotherapy-resistant DLBCLs on the cDNA chip, and it has been linked to prognosis of hematological malignancies. We also examined the relationship between PRAME gene expression and progression-free survival (PFS) in 45 patients with DLBCL. The progression-free survival
    [Show full text]
  • Accepted Version
    Article A catalog of genetic loci associated with kidney function from analyses of a million individuals WUTTKE, Matthias, et al. Abstract Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n?=?1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n?=?416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority [...] Reference WUTTKE, Matthias, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, vol. 51, no. 6, p. 957-972 DOI : 10.1038/s41588-019-0407-x PMID : 31152163 Available at: http://archive-ouverte.unige.ch/unige:147447 Disclaimer: layout of this document may differ from the published version. 1 / 1 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Genet Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 August 19.
    [Show full text]
  • Scores Tag L1102 L1214 L1232 HOSE1 HOSE2 HS 1
    Scores Tag L1102 L1214 L1232 HOSE1 HOSE2 HS 1 CTGGAGGCTG 9.5 8.71 10.67 0 0 229335 1 CTGGAGGCTG 9.5 8.71 10.67 0 0 169350 1 CTGGAGGCTG 9.5 8.71 10.67 0 0 61384 1 CTGGAGGCTG 9.5 8.71 10.67 0 0 105633 1 CTGGAGGCTG 9.5 8.71 10.67 0 0 149152 1 GCAACTGTGA 7.77 8.71 6.67 0 0 169476 1 ATTTGTCCCA 14.68 7.62 5.33 0 0 57301 1 ATTTGTCCCA 14.68 7.62 5.33 0 0 356122 1 GTCGGGCCTC 71.65 39.18 22.67 1.16 0 73769 1 ATTCTCCAGT 35.39 39.18 44.01 85.74 89.13 458218 1 ATTCTCCAGT 35.39 39.18 44.01 85.74 89.13 406300 1 AGGGCTTCCA 56.98 37 69.35 134.4 141.05 458148 1 CTGCTATACG 11.22 14.15 9.34 41.71 38.94 180946 1 TTGGTGAAGG 10.36 18.5 17.34 61.41 49.32 426138 1 GCCGTGTCCG 21.58 9.79 8 54.45 58.84 356666 1 GCCGTGTCCG 21.58 9.79 8 54.45 58.84 380843 1 ACCCACGTCA 0.86 0 1.33 27.81 20.77 298184 1 ACCCACGTCA 0.86 0 1.33 27.81 20.77 400124 1 TCTCCATACC 0.86 1.09 0 23.17 25.09 1 CCCTTGTCCG 0.86 0 0 26.65 20.77 127824 1 CTTCTTGCCC 0 0 1.33 47.5 36.34 347939 1 CTTCTTGCCC 0 0 1.33 47.5 36.34 424220 1 CTGTACTTGT 0.86 0 0 63.72 29.42 75678 1 CCCAACGCGC 0 0 0 83.42 47.59 347939 1 GCAAGAAAGT 0 0 0 26.65 39.81 36977 1 GCAAGAAAGT 0 0 0 26.65 39.81 155376 1 ACACAGCAAG 0 0 0 23.17 15.58 1 AGCTTCCACC 0 0 0 11.59 7.79 355542 1 GAGTGGCTAC 0 0 0 9.27 6.92 1 ATGGTGGGGG 0 0 0 8.11 22.5 343586 1 AGATCCCAAG 0 0 0 5.79 8.65 50813 1 TGGAAGGAGG 0 0 0 8.11 6.06 1 TAGCCGGGAC 0 0 0 5.79 7.79 107740 1 TGTGGATGTG 0 0 0 4.63 12.11 180878 1 GGGTAGGGGG 0 0 0 34.76 9.52 13323 0.99 AATAAAGCAA 2.59 7.62 8 0 0 76698 0.99 AATAAAGCAA 2.59 7.62 8 0 0 126043 0.99 GGAACAAACA 8.63 3.26 18.67 0 0 375108
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.440,393 B2 Birrer Et Al
    USOO8440393B2 (12) United States Patent (10) Patent No.: US 8.440,393 B2 Birrer et al. (45) Date of Patent: May 14, 2013 (54) PRO-ANGIOGENIC GENES IN OVARIAN OTHER PUBLICATIONS TUMORENDOTHELIAL CELL, SOLATES Boyd (The Basic Science of Oncology, 1992, McGraw-Hill, Inc., p. (75) Inventors: Michael J. Birrer, Mt. Airy, MD (US); 379). Tomas A. Bonome, Washington, DC Tockman et al. (Cancer Res., 1992, 52:2711s-2718s).* (US); Anil Sood, Pearland, TX (US); Pritzker (Clinical Chemistry, 2002, 48: 1147-1150).* Chunhua Lu, Missouri City, TX (US) Benedict et al. (J. Exp. Medicine, 2001, 193(1) 89-99).* Jiang et al. (J. Biol. Chem., 2003, 278(7) 4763-4769).* (73) Assignees: The United States of America as Matsushita et al. (FEBS Letters, 1999, vol. 443, pp. 348-352).* Represented by the Secretary of the Singh et al. (Glycobiology, 2001, vol. 11, pp. 587-592).* Department of Health and Human Abbosh et al. (Cancer Res. Jun. 1, 2006 66:5582-55.91 and Supple Services, Washington, DC (US); The mental Figs. S1-S7).* University of MD Anderson Cancer Zhai et al. (Chinese General Practice Aug. 2008, 11(8A): 1366 Center, Houston, TX (US) 1367).* Lu et al. (Cancer Res. Feb. 15, 2007, 64(4): 1757-1768).* (*) Notice: Subject to any disclaimer, the term of this Bagnato et al., “Activation of Mitogenic Signaling by Endothelin 1 in patent is extended or adjusted under 35 Ovarian Carcinoma Cells', Cancer Research, vol. 57, pp. 1306-1311, U.S.C. 154(b) by 194 days. 1997. Bouras et al., “Stanniocalcin 2 is an Estrogen-responsive Gene (21) Appl.
    [Show full text]
  • Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome Through Global and Focal Changes in H3K36 and H3K27 Methylation
    Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation Relja Popovic1., Eva Martinez-Garcia1., Eugenia G. Giannopoulou2,3, Quanwei Zhang4, Qingyang Zhang4, Teresa Ezponda1, Mrinal Y. Shah1, Yupeng Zheng5, Christine M. Will1, Eliza C. Small1, Youjia Hua1, Marinka Bulic1, Yanwen Jiang6, Matteo Carrara7, Raffaele A. Calogero7, William L. Kath8, Neil L. Kelleher5, Ji-Ping Wang4, Olivier Elemento6, Jonathan D. Licht1* 1 Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 2 Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, United States of America, 3 Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, New York, United States of America, 4 Department of Statistics, Northwestern University, Evanston, Illinois, United States of America, 5 Department of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America, 6 HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America, 7 Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy, 8 Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America Abstract Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma.
    [Show full text]
  • Short-Term Western-Style Diet Negatively Impacts Reproductive Outcomes in Primates
    Short-term Western-style diet negatively impacts reproductive outcomes in primates Sweta Ravisankar, … , Shawn L. Chavez, Jon D. Hennebold JCI Insight. 2021;6(4):e138312. https://doi.org/10.1172/jci.insight.138312. Research Article Metabolism Reproductive biology A maternal Western-style diet (WSD) is associated with poor reproductive outcomes, but whether this is from the diet itself or underlying metabolic dysfunction is unknown. Here, we performed a longitudinal study using regularly cycling female rhesus macaques (n = 10) that underwent 2 consecutive in vitro fertilization (IVF) cycles, one while consuming a low-fat diet and another 6–8 months after consuming a high-fat WSD. Metabolic data were collected from the females prior to each IVF cycle. Follicular fluid (FF) and oocytes were assessed for cytokine/steroid levels and IVF potential, respectively. Although transition to a WSD led to weight gain and increased body fat, no difference in insulin levels was observed. A significant decrease in IL-1RA concentration and the ratio of cortisol/cortisone was detected in FF after WSD intake. Despite an increased probability of isolating mature oocytes, a 44% reduction in blastocyst number was observed with WSD consumption, and time-lapse imaging revealed delayed mitotic timing and multipolar divisions. RNA sequencing of blastocysts demonstrated dysregulation of genes involved in RNA binding, protein channel activity, mitochondrial function and pluripotency versus cell differentiation after WSD consumption. Thus, short-term WSD consumption promotes a proinflammatory intrafollicular microenvironment that is associated with impaired preimplantation development in the absence of large-scale metabolic changes. Find the latest version: https://jci.me/138312/pdf RESEARCH ARTICLE Short-term Western-style diet negatively impacts reproductive outcomes in primates Sweta Ravisankar,1,2 Alison Y.
    [Show full text]
  • A 14.8 Mb 12P Deletion Disrupting ETV6 in a Patient with Myelodysplastic Syndrome
    tics: Cu ne rr e en G t y R r e a t s i e d a e r r c e h Valetto et al., Hereditary Genet 2017, 6:1 H Hereditary Genetics DOI: 10.4172/2161-1041.1000174 ISSN: 2161-1041 Research Article Open Access A 14.8 Mb 12p Deletion Disrupting ETV6 in a Patient with Myelodysplastic Syndrome Angelo Valetto 1*, Veronica Bertini1, Elena Ciabatti2,3, Maria Immacolata Ferreri1, Alice Guazzelli1, Antonio Azzarà2, Susanna Grassi2, Alessia Azzarà1, Francesca Guerrini2, Iacopo Petrini2,4 and Sara Galimberti2 1Laboratory of Medical Genetics, A.O.U.P., S. Chiara Hospital, Pisa, Italy 2Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy 3GenOMeC, University of Siena 4Department of translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy *Corresponding author: Valetto A, Laboratory of Medical Genetics, A.O.U.P., S. Chiara Hospital, Pisa, Italy, Tel: +39050992777; E-mail: [email protected] Received Date: Oct 27, 2016; Accepted Date: Mar 16, 2017; Published Date: Mar 21, 2017 Copyright: © 2017 Valetto A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract We present on a new case of myelodysplastic syndrome characterized by array Comparative Genomic Hybridization. This technique confirmed the monosomy 7, detected by conventional cytogenetics, and revealed also a deletion on the short arm of chromosome 12. This deletion extends for about 14.8 Mb and breaks ETV6 gene.
    [Show full text]