Short-Term Western-Style Diet Negatively Impacts Reproductive Outcomes in Primates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recombinant Human FLRT1 Catalog Number: 2794-FL
Recombinant Human FLRT1 Catalog Number: 2794-FL DESCRIPTION Source Mouse myeloma cell line, NS0derived human FLRT1 protein Ile21Pro524, with a Cterminal 6His tag Accession # Q9NZU1 Nterminal Sequence Ile21 Analysis Predicted Molecular 56.3 kDa Mass SPECIFICATIONS SDSPAGE 7080 kDa, reducing conditions Activity Measured by the ability of the immobilized protein to support the adhesion of Neuro2A mouse neuroblastoma cells. Recombinant Human FLRT1 immobilized at 2.5 μg/mL, 100 μL/well, will meidate > 50% Neuro2A cell adhesion. Optimal dilutions should be determined by each laboratory for each application. Endotoxin Level <0.10 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDSPAGE under reducing conditions and visualized by silver stain. Formulation Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 200 μg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freezethaw cycles. l 12 months from date of receipt, 20 to 70 °C as supplied. l 1 month, 2 to 8 °C under sterile conditions after reconstitution. l 3 months, 20 to 70 °C under sterile conditions after reconstitution. BACKGROUND FLRT1 is one of three FLRT (fibronectin, leucine rich repeat, transmembrane) glycoproteins expressed in distinct areas of the developing brain and other tissues (1, 2). The 90 kDa type I transmembrane (TM) human FLRT1 is synthesized as a 646 amino acid (aa) precursor with a 20 aa signal sequence, a 504 aa extracellular domain (ECD), a 21 aa TM segment and a 101 aa cytoplasmic region. -
Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10. -
Role of Mitochondrial Ribosomal Protein S18-2 in Cancerogenesis and in Regulation of Stemness and Differentiation
From THE DEPARTMENT OF MICROBIOLOGY TUMOR AND CELL BIOLOGY (MTC) Karolinska Institutet, Stockholm, Sweden ROLE OF MITOCHONDRIAL RIBOSOMAL PROTEIN S18-2 IN CANCEROGENESIS AND IN REGULATION OF STEMNESS AND DIFFERENTIATION Muhammad Mushtaq Stockholm 2017 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB 2017 © Muhammad Mushtaq, 2017 ISBN 978-91-7676-697-2 Role of Mitochondrial Ribosomal Protein S18-2 in Cancerogenesis and in Regulation of Stemness and Differentiation THESIS FOR DOCTORAL DEGREE (Ph.D.) By Muhammad Mushtaq Principal Supervisor: Faculty Opponent: Associate Professor Elena Kashuba Professor Pramod Kumar Srivastava Karolinska Institutet University of Connecticut Department of Microbiology Tumor and Cell Center for Immunotherapy of Cancer and Biology (MTC) Infectious Diseases Co-supervisor(s): Examination Board: Professor Sonia Lain Professor Ola Söderberg Karolinska Institutet Uppsala University Department of Microbiology Tumor and Cell Department of Immunology, Genetics and Biology (MTC) Pathology (IGP) Professor George Klein Professor Boris Zhivotovsky Karolinska Institutet Karolinska Institutet Department of Microbiology Tumor and Cell Institute of Environmental Medicine (IMM) Biology (MTC) Professor Lars-Gunnar Larsson Karolinska Institutet Department of Microbiology Tumor and Cell Biology (MTC) Dedicated to my parents ABSTRACT Mitochondria carry their own ribosomes (mitoribosomes) for the translation of mRNA encoded by mitochondrial DNA. The architecture of mitoribosomes is mainly composed of mitochondrial ribosomal proteins (MRPs), which are encoded by nuclear genomic DNA. Emerging experimental evidences reveal that several MRPs are multifunctional and they exhibit important extra-mitochondrial functions, such as involvement in apoptosis, protein biosynthesis and signal transduction. Dysregulations of the MRPs are associated with severe pathological conditions, including cancer. -
MTO1 Mediates Tissue Specificity of OXPHOS Defects Via Trna
CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Human Molecular Genetics, 2015, Vol. 24, No. 8 2247–2266 doi: 10.1093/hmg/ddu743 Advance Access Publication Date: 30 December 2014 Original Article ORIGINAL ARTICLE MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention Christin Tischner1,†, Annette Hofer1,†, Veronika Wulff1, Joanna Stepek1, Iulia Dumitru1, Lore Becker2,3, Tobias Haack4,6, Laura Kremer4,6, Alexandre N. Datta7,WolfgangSperl6,8,ThomasFloss5,WolfgangWurst5,9,10,11,12, Zofia Chrzanowska-Lightowlers13, Martin Hrabe De Angelis3,12,14,15,16, Thomas Klopstock2,3,6,10,12, Holger Prokisch4,5 and Tina Wenz1,6,* 1Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, Cologne 50674, Germany, 2Department of Neurology, Friedrich-Baur- Institute, Ludwig-Maximilians-University, Munich 80336, Germany, 3German Mouse Clinic, Institute of Experimental Genetics, 4Institute of Human Genetics, 5Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), Neuherberg 85764, Germany, 6German Network for Mitochondrial Disorders (mitoNET), Germany, 7Division of Neuropediatrics and Developmental Medicine, University Children’s Hospital Basel (UKBB), University of Basel, Basel 4031, Switzerland, 8Department of Pediatrics, Paracelsus Medical University Salzburg, -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
TRMT2B Is Responsible for Both Trna and Rrna M5u-Methylation in Human Mitochondria
ManuscriptbioRxiv - with preprint full author doi: https://doi.org/10.1101/797472 details ; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria 1 1* Christopher A. Powell and Michal Minczuk 1 Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK *Corresponding author: Michal Minczuk, e-mail: [email protected] Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK Phone: +44 (0)1223 252750 1 bioRxiv preprint doi: https://doi.org/10.1101/797472; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RNA species play host to a plethora of post-transcriptional modifications which together make up the epitranscriptome. 5-methyluridine (m5U) is one of the most common modifications made to cellular RNA, where it is found almost ubiquitously in bacterial and eukaryotic cytosolic tRNAs at position 54. Here, we demonstrate that m5U54 in human mitochondrial tRNAs is catalysed by the nuclear-encoded enzyme TRMT2B, and that its repertoire of substrates is expanded to ribosomal RNAs, catalysing m5U429 in 12S rRNA. We show that TRMT2B is not essential for viability in human cells and that knocking-out the gene shows no obvious phenotype with regards to RNA stability, mitochondrial translation, or cellular growth. -
Single Cell Mutational Profiling and Clonal Phylogeny in Cancer Nicola E
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press For GENOME RESEARCH (Methods) Single cell mutational profiling and clonal phylogeny in cancer Nicola E Potter – Institute of Cancer Research, UK Luca Ermini – Institute of Cancer Research, UK Elli Papaemmanuil – Wellcome Trust Sanger Institute, UK Giovanni Cazzaniga - Clinica Pediatrica, Italy Gowri Vijayaraghavan – Institute of Cancer Research, UK Ian Titley – Institute of Cancer Research, UK Anthony Ford – Institute of Cancer Research, UK Peter Campbell - Wellcome Trust Sanger Institute, UK Lyndal Kearney – Institute of Cancer Research, UK Mel Greaves – Institute of Cancer Research, UK Corresponding Author - Professor Mel Greaves FRS, Head, Haemato-Oncology Research Unit, Division of Molecular Pathology, Brookes Lawley Building, 15 Cotswold Road, Sutton, Surrey SM2 5NG T +44 (0)20 8722 4073 (direct) E [email protected] Running title: Genetic analysis of single cancer cells Keywords: Heterogeneity, Single cells, Cancer, Phylogeny 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The development of cancer is a dynamic evolutionary process in which intra-clonal, genetic diversity provides a substrate for clonal selection and a source of therapeutic escape. The complexity and topography of intra-clonal genetic architecture has major implications for biopsy-based prognosis and for targeted therapy. High depth, next generation sequencing (NGS) efficiently captures the mutational load of individual tumours or biopsies. But, being a snapshot portrait of total DNA, it disguises the fundamental features of sub-clonal variegation of genetic lesions and of clonal phylogeny. Single cell genetic profiling provides a potential resolution to this problem but methods developed to date all have limitations. -
MRPS25 (NM 022497) Human Tagged ORF Clone – RC201353
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC201353 MRPS25 (NM_022497) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: MRPS25 (NM_022497) Human Tagged ORF Clone Tag: Myc-DDK Symbol: MRPS25 Synonyms: COXPD50; MRP-S25; RPMS25 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC201353 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCCATGAAGGGCCGCTTCCCCATCCGCCGCACCCTGCAATATCTGAGCCAGGGGAACGTGGTGTTCA AGGACTCCGTGAAGGTCATGACAGTGAATTACAACACGCATGGGGAGCTGGGCGAGGGCGCCAGGAAGTT TGTGTTTTTCAACATACCTCAGATTCAATACAAAAACCCTTGGGTGCAGATCATGATGTTTAAGAACATG ACGCCGTCACCCTTCCTGCGATTCTACTTAGATTCTGGGGAGCAGGTCCTGGTGGATGTGGAGACCAAGA GCAATAAGGAGATCATGGAGCACATCAGAAAAATCTTGGGGAAGAATGAGGAAACCCTCAGGGAAGAGGA GGAGGAGAAAAAGCAGCTTTCTCACCCAGCCAACTTCGGCCCTCGAAAGTACTGCCTGCGGGAGTGCATC TGTGAAGTGGAAGGGCAGGTGCCCTGCCCCAGCCTGGTGCCATTACCCAAGGAGATGAGGGGGAAGTACA AAGCCGCTCTGAAAGCCGATGCCCAGGAC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC201353 protein sequence Red=Cloning site Green=Tags(s) MPMKGRFPIRRTLQYLSQGNVVFKDSVKVMTVNYNTHGELGEGARKFVFFNIPQIQYKNPWVQIMMFKNM TPSPFLRFYLDSGEQVLVDVETKSNKEIMEHIRKILGKNEETLREEEEEKKQLSHPANFGPRKYCLRECI CEVEGQVPCPSLVPLPKEMRGKYKAALKADAQD -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
Expression of the POTE Gene Family in Human Ovarian Cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R
www.nature.com/scientificreports OPEN Expression of the POTE gene family in human ovarian cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R. James3, Christina N. Kufel3, Austin Miller 4, Jane Meza5, Ronny Drapkin 6, Kunle Odunsi7,8,9, 2,10 1,2,3 Received: 5 July 2018 David Klinkebiel & Adam R. Karpf Accepted: 7 November 2018 The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA Published: xx xx xxxx expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specifc expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed signifcantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifcally associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had signifcantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confrmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy. -
Increased Expression of Fibronectin Leucine-Rich Transmembrane Protein 3 in the Dorsal Root Ganglion Induces Neuropathic Pain in Rats
The Journal of Neuroscience, September 18, 2019 • 39(38):7615–7627 • 7615 Neurobiology of Disease Increased Expression of Fibronectin Leucine-Rich Transmembrane Protein 3 in the Dorsal Root Ganglion Induces Neuropathic Pain in Rats Moe Yamada,1 Yuki Fujita,2,3 Yasufumi Hayano,2 Hideki Hayakawa,4 Kousuke Baba,4 Hideki Mochizuki,4 and X Toshihide Yamashita1,2,3,5 1Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, 2Department of Molecular Neuroscience, Graduate School of Medicine, 3Immunology Frontier Research Center, 4Department of Neurology, Graduate School of Medicine, and 5Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Neuropathic pain is a chronic condition that occurs frequently after nerve injury and induces hypersensitivity or allodynia characterized by aberrant neuronal excitability in the spinal cord dorsal horn. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) is a modu- lator of neurite outgrowth, axon pathfinding, and cell adhesion, which is upregulated in the dorsal horn following peripheral nerve injury. However, the function of FLRT3 in adults remains unknown. Therefore, we aimed to investigate the involvement of spinal FLRT3 in neuropathic pain using rodent models. In the dorsal horns of male rats, FLRT3 protein levels increased at day 4 after peripheral nerve injury. In the DRG, FLRT3 was expressed in activating transcription factor 3-positive, injured sensory neurons. Peripheral nerve injury stimulated Flrt3 transcription in the DRG but not in the spinal cord. Intrathecal administration of FLRT3 protein to naive rats induced mechanical allodynia and GluN2B phosphorylation in the spinal cord. DRG-specific FLRT3 overexpression using adeno-associated virus also produced mechanical allodynia. -
Genetic Ablation of FLRT3 Reveals a Novel Morphogenetic Function for the Anterior Visceral Endoderm in Suppressing Mesoderm Differentiation
Downloaded from genesdev.cshlp.org on March 12, 2020 - Published by Cold Spring Harbor Laboratory Press Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation Joaquim Egea,1,5,8 Christian Erlacher,1,5 Eloi Montanez,2 Ingo Burtscher,3 Satoru Yamagishi,1 Martin Heß,4 Falko Hampel,1 Rodrigo Sanchez,1,6 Maria Teresa Rodriguez-Manzaneque,2 Michael R. Bösl,1 Reinhard Fässler,2 Heiko Lickert,3 and Rüdiger Klein1,7 1Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, 82152 Martinsried, Germany; 2Department of Molecular Medicine, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany; 3Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; 4Biozentrum der LMU Biology, 82152 Martinsried, Germany During early mouse development, the anterior visceral endoderm (AVE) secretes inhibitor and activator signals that are essential for establishing the anterior–posterior (AP) axis of the embryo and for restricting mesoderm formation to the posterior epiblast in the primitive streak (PS) region. Here we show that AVE cells have an additional morphogenetic function. These cells express the transmembrane protein FLRT3. Genetic ablation of FLRT3 did not affect the signaling functions of the AVE according to the normal expression pattern of Nodal and Wnt and the establishment of a proper AP patterning in the epiblast. However, FLRT3−/− embryos showed a highly disorganized basement membrane (BM) in the AVE region. Subsequently, adjacent anterior epiblast cells displayed an epithelial-to-mesenchymal transition (EMT)-like process characterized by the loss of cell polarity, cell ingression, and the up-regulation of the EMT and the mesodermal marker genes Eomes, Brachyury/T, and FGF8.