Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria Ambigua) and Murray Cod (Maccullochella Peelii) (Percichthyidae)

Total Page:16

File Type:pdf, Size:1020Kb

Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria Ambigua) and Murray Cod (Maccullochella Peelii) (Percichthyidae) International Journal of Molecular Sciences Article Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria ambigua) and Murray Cod (Maccullochella peelii) (Percichthyidae) Foyez Shams 1,*, Fiona Dyer 1, Ross Thompson 1, Richard P. Duncan 1, Jason D. Thiem 2, Zuzana Majtánová 3 and Tariq Ezaz 1,* 1 Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia 2 Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales 2700, Australia 3 Institute of Animal Physiology and Genetics, CAS, p.r.i., 277 21 Libˇechov, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (T.E.); Tel.: +61-2-6201-2872 (F.S.); +61-2-6201-2297 (T.E.) Received: 7 August 2019; Accepted: 28 August 2019; Published: 30 August 2019 Abstract: Karyotypic data from Australian native freshwater fishes are scarce, having been described from relatively few species. Golden perch (Macquaria ambigua) and Murray cod (Maccullochella peelii) are two large-bodied freshwater fish species native to Australia with significant indigenous, cultural, recreational and commercial value. The arid landscape over much of these fishes’ range, coupled with the boom and bust hydrology of their habitat, means that these species have potential to provide useful evolutionary insights, such as karyotypes and sex chromosome evolution in vertebrates. Here we applied standard and molecular cytogenetic techniques to characterise karyotypes for golden perch and Murray cod. Both species have a diploid chromosome number 2n = 48 and a male heterogametic sex chromosome system (XX/XY). While the karyotype of golden perch is composed exclusively of acrocentric chromosomes, the karyotype of Murray cod consists of two submetacentric and 46 subtelocentric/acrocentric chromosomes. We have identified variable accumulation of repetitive sequences (AAT)10 and (CGG)10 along with diverse methylation patterns, especially on the sex chromosomes in both species. Our study provides a baseline for future cytogenetic analyses of other Australian freshwater fishes, especially species from the family Percichthyidae, to better understand their genome and sex chromosome evolution. Keywords: sex determination; florescence in situ hybridisation (FISH); comparative genomic hybridisation (CGH); karyogram; DNA methylation 1. Introduction Morphological characteristics of chromosomes, like the size and number (including ploidy) may vary within taxonomic groups such as families, genera and even species [1]. Moreover, functional differences (e.g., accumulation of repetitive sequences, location of a certain gene or DNA methylation) often occur among species as well as among populations or among individuals of the same species [2–4]. Consequently, cytogenetic studies provide a useful tool for establishing phylogenetic and evolutionary relationships among species. Karyotype analysis can also facilitate the discovery of heteromorphic or heterochromatic sex chromosomes. Identification of sex chromosomes is important in dioecious species as it provides information on the evolution of sex determination and insights into the effect of environment in driving sex ratios Int. J. Mol. Sci. 2019, 20, 4244; doi:10.3390/ijms20174244 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 15 Int. J. Mol. Sci. 2019, 20, 4244 2 of 14 Identification of sex chromosomes is important in dioecious species as it provides information ofon populations the evolution through of sex upregulation determination and and downregulation insights into the of effect genes ofin environment gonadal development in driving sex [5, 6]. ratios of populations through upregulation and downregulation of genes in gonadal development The importance of understanding the sex chromosome systems in fish is heightened by the existence of [5,6]. The importance of understanding the sex chromosome systems in fish is heightened by the diverse genetic and epigenetic features such as genetic sex determination (GSD), environmental sex existence of diverse genetic and epigenetic features such as genetic sex determination (GSD), determination (ESD), mixed GSD–ESD and rapid sex reversal within this large group of animals [7]. environmental sex determination (ESD), mixed GSD–ESD and rapid sex reversal within this large Fish comprise more than fifty percent of extant vertebrate species [8], with around 32,500 species, group of animals [7]. includingFish more comprise than 15,000 more freshwaterthan fifty percent species [of9]. exta Freshwatersnt vertebrate are thusspecies hyperdiverse, [8], with around considering 32,500 this habitatspecies, constitutes including less more than than 0.3% 15,000 [10] of freshwater available global species water. [9]. Freshwaters Freshwater fishare arethus thus hyperdiverse, an important componentconsidering of this global habitat biodiversity constitutes and less evolutionary than 0.3% [10] studies. of available global water. Freshwater fish are thusThe an familyimportant Percichthyidae component of global (Order: biodiversity Centrarchiformes) and evolutionary or temperate studies. perches, consists of 22 freshwaterThe family and estuarinePercichthyidae species (Order: under Centrarchifo nine genera,rmes) distributed or temperate in Australia perches, and consists South Americaof 22 (Figurefreshwater1)[ 11 ].and The estuarine species investigatedspecies under here nine are gene goldenra, distributed perch (Macquaria in Australia ambigua and )South and Murray America cod (Maccullochella(Figure 1) [11]. peelii The), species two large-bodied investigated freshwaterhere are golden fish speciesperch (Macquaria native to ambigua the Murray) and DarlingMurray cod Basin (MDB)(Maccullochella in south-eastern peelii), Australiatwo large-bodied [12,13]. Goldenfreshwater perch fish also species occurs native in central to the Australia Murray Darling in the Lake Basin Eyre Basin(MDB) and in in south-eastern the central, coastal Australia Queensland [12,13]. Golden Fitzroy perch Basin, also although occurs in these central populations Australia are in consideredthe Lake toEyre be separate Basin and cryptic in the species central, [14 coastal]. Both Queenslan golden perchd Fitzroy and Murray Basin, although cod have these significant populations indigenous, are cultural,considered recreational to be separate and commercial cryptic species value. [14]. Moreover, Both golden both perch species and have Murray been bredcod have in hatcheries significant and extensivelyindigenous, stocked cultural, in catchmentsrecreational acrossand commercial the MDB forvalue. more Moreover, than 30 years.both species have been bred in hatcheries and extensively stocked in catchments across the MDB for more than 30 years. Figure 1 1.. DistributionDistribution of of nine nine genera genera of ofPercichthyidae Percichthyidae covering covering Australia, Australia, Chile Chile and andArgentina Argentina. SexSex chromosomes chromosomes in fishin fish have have been been studied studied since since theearly the early twentieth twentieth century, century, when thewhen presence the ofpresence heterogametic of heterogametic sex chromosome sex chromosome systems (either systems XY (either or WZ) XY was or describedWZ) was described [15–17]. Studies[15–17]. in fishesStudies have in identified fishes have diverse identified sex chromosomal diverse sex chromosomal systems (including systems XX (including/XY, XX/X0, XX/XY, ZZ/ZW, XX/X0, ZZ/Z0, XXZZ/ZW,/XY1Y2, ZZ/Z0, X1X1X2X2 XX/XY1Y2,/X1X2Y, ZZX1X1X2X2/X1X2Y,/ZW1W2, Z1Z1Z2Z2 ZZ/ZW1W2,/Z1Z2W), Z1Z1Z2Z2/Z1Z2W), with the XX/XY (male with heterogametic) the XX/XY and(male ZZ /heterogametic)ZW (female heterogametic) and ZZ/ZW (female systems heterogametic) being predominant systems being [18,19 predominant]. The ancestral [18,19]. fish The sex chromosomeancestral fish (sex-determining sex chromosome locus) (sex-determining has gone through locus) a complete has gone shift through of chromosome a complete pairs shift because of ofchromosome frequent chromosome pairs because rearrangements of frequent such chromosome as fusion andrearrangements translocation orsuch transposition as fusion [and20,21 ]. Suchtranslocation rearrangement or transposition events across [20,21]. the Such genome, rearrangement including events the sex across chromosomes, the genome, make including teleost the fish potentiallysex chromosomes, informative make for studiesteleost offish karyotype potentiall andy informative sex chromosome for studies evolution. of karyotype To date, thereand sex have beenchromosome no published evolution. studies onTo thedate, mode there of sexhave determination been no published in Australian studies freshwater on the mode fish. of sex determinationThe karyotype in Australian data for Australianfreshwater fish. freshwater fish fauna are scarce (Figure2)[ 22,23]. Prior to the current study, there have been no published accounts of karyotype data for any fish from the family Percichthyidae. Molecular characterisation of karyotypes is an important first step towards understanding genome evolution and organisation. In particular, mapping repetitive sequences Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 15 Int. J. Mol.The Sci. karyotype2019, 20, 4244 data for Australian freshwater fish fauna are scarce (Figure 2) [22,23]. Prior to the3 of 14 current study, there have been no published accounts of karyotype data for any fish from the family Percichthyidae.
Recommended publications
  • Comprehensive Phylogeny of Ray-Finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data
    Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data Lily C. Hughesa,b,1,2, Guillermo Ortía,b,1,2, Yu Huangc,d,1, Ying Sunc,e,1, Carole C. Baldwinb, Andrew W. Thompsona,b, Dahiana Arcilaa,b, Ricardo Betancur-R.b,f, Chenhong Lig, Leandro Beckerh, Nicolás Bellorah, Xiaomeng Zhaoc,d, Xiaofeng Lic,d, Min Wangc, Chao Fangd, Bing Xiec, Zhuocheng Zhoui, Hai Huangj, Songlin Chenk, Byrappa Venkateshl,2, and Qiong Shic,d,2 aDepartment of Biological Sciences, The George Washington University, Washington, DC 20052; bNational Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cShenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute Academy of Marine Sciences, Beijing Genomics Institute Marine, Beijing Genomics Institute, 518083 Shenzhen, China; dBeijing Genomics Institute Education Center, University of Chinese Academy of Sciences, 518083 Shenzhen, China; eChina National GeneBank, Beijing Genomics Institute-Shenzhen, 518120 Shenzhen, China; fDepartment of Biology, University of Puerto Rico–Rio Piedras, San Juan 00931, Puerto Rico; gKey Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306 Shanghai, China; hLaboratorio de Ictiología y Acuicultura Experimental, Universidad Nacional del Comahue–CONICET, 8400 Bariloche, Argentina; iProfessional Committee of Native Aquatic Organisms and Water Ecosystem, China Fisheries Association, 100125 Beijing, China; jCollege of Life Science and Ecology, Hainan Tropical Ocean University, 572022 Sanya, China; kYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China; and lComparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673 Singapore Edited by Scott V.
    [Show full text]
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Global Patterns of Ranavirus Detections
    NOTE Global patterns of ranavirus detections Jesse L. Brunnera*, Deanna H. Olsonb, Matthew J. Grayc, Debra L. Millerd, and Amanda L.J. Duffuse aSchool of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA; bUSDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331-8550, USA; cDepartment of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; dCollege of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; eDepartment of Natural Sciences, Gordon State College, Barnesville, GA 30204, USA *[email protected] Abstract Ranaviruses are emerging pathogens of poikilothermic vertebrates. In 2015 the Global Ranavirus Reporting System (GRRS) was established as a centralized, open access, online database for reports of the presence (and absence) of ranavirus around the globe. The GRRS has multiple data layers (e.g., location, date, host(s) species, and methods of detection) of use to those studying the epidemiol- ogy, ecology, and evolution of this group of viruses. Here we summarize the temporal, spatial, diag- nostic, and host-taxonomic patterns of ranavirus reports in the GRRS. The number, distribution, and host diversity of ranavirus reports have increased dramatically since the mid 1990s, presumably in response to increased interest in ranaviruses and the conservation of their hosts, and also the availability of molecular diagnostics. Yet there are clear geographic and taxonomic biases among the OPEN ACCESS reports. We encourage ranavirus researchers to add their studies to the portal because such collation can provide collaborative opportunities and unique insights to our developing knowledge of this For personal use only.
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Fisheries Guidelines for Design of Stream Crossings
    Fish Habitat Guideline FHG 001 FISH PASSAGE IN STREAMS Fisheries guidelines for design of stream crossings Elizabeth Cotterell August 1998 Fisheries Group DPI ISSN 1441-1652 Agdex 486/042 FHG 001 First published August 1998 Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. The Queensland Department of Primary Industries has taken all reasonable steps to ensure the information contained in this publication is accurate at the time of publication. Readers should ensure that they make appropriate enquiries to determine whether new information is available on the particular subject matter. © The State of Queensland, Department of Primary Industries 1998 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Department of Primary Industries, Queensland. Enquiries should be addressed to: Manager Publishing Services Queensland Department of Primary Industries GPO Box 46 Brisbane QLD 4001 Fisheries Guidelines for Design of Stream Crossings BACKGROUND Introduction Fish move widely in rivers and creeks throughout Queensland and Australia. Fish movement is usually associated with reproduction, feeding, escaping predators or dispersing to new habitats. This occurs between marine and freshwater habitats, and wholly within freshwater. Obstacles to this movement, such as stream crossings, can severely deplete fish populations, including recreational and commercial species such as barramundi, mullet, Mary River cod, silver perch, golden perch, sooty grunter and Australian bass. Many Queensland streams are ephemeral (they may flow only during the wet season), and therefore crossings must be designed for both flood and drought conditions.
    [Show full text]
  • Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert
    Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Report to the Murray–Darling Basin Authority and the South Australian Department for Environment and Water Scotte Wedderburn and Thomas Barnes June 2018 © The University of Adelaide and the Department for Environment and Water With the exception of the Commonwealth Coat of Arms, the Murray–Darling Basin Authority logo, photographs and presented data, all material presented in this document is provided under a Creative Commons Attribution 4.0 International licence (https://creativecommons.org/licences/by/4.0/). For the avoidance of any doubt, this licence only applies to the material set out in this document. The details of the licence are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 4.0 licence (https://creativecommons.org/licences/by/4.0/legalcode). MDBA’s preference is that this publication be attributed (and any material sourced from it) using the following: Publication title: Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Source: Licensed from the Department for Environment and Water under a Creative Commons Attribution 4.0 International Licence The contents of this publication do not purport to represent the position of the Commonwealth of Australia or the MDBA in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources. To the extent permitted by law, the copyright holders (including its employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Stock Assessment of Golden Perch for PIRSA
    Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 October 2012 Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture 1 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 October 2012 2 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA This publication may be cited as: Ferguson, G. J. and Ye, Q (2012). Stock Assessment of Golden perch (Macquaria ambigua). Stock Assessment Report for PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. F2007/01051- 1. SARDI Research Report Series No. 656. 55pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Species Composition and Invasion Risks of Alien Ornamental Freshwater
    www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people.
    [Show full text]
  • Betanodavirus and VER Disease: a 30-Year Research Review
    pathogens Review Betanodavirus and VER Disease: A 30-year Research Review Isabel Bandín * and Sandra Souto Departamento de Microbioloxía e Parasitoloxía-Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] * Correspondence: [email protected] Received: 20 December 2019; Accepted: 4 February 2020; Published: 9 February 2020 Abstract: The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control. Keywords: nervous necrosis virus (NNV); viral encephalopathy and retinopathy (VER); virus–host interaction; epizootiology; diagnostics; control 1. Introduction Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN). The disease was first described at the end of the 1980s in Australia and in the Caribbean [1–3], and has since caused a great deal of mortalities and serious economic losses in a variety of reared marine fish species, but also in freshwater species worldwide.
    [Show full text]
  • Estuary Perch
    Percichthyidae Macquaria colonorum (Günther, 1863) Estuary Perch A.C. Hay & T. Trnski D IX-X, 8-11 A III, 7-9 P1 12-16 P2 I, 5 C 17 V 25 Distribution Adults occur in coastal drainages of Size at south-eastern Australia from the Richmond River, NSW (28º53´S) to the Murray River, SA (139ºE). Hatching <4.8 mm They are catadromous, generally inhabiting estuaries Notochord flexion 4.8 – 5.5 mm and tidal reaches of rivers and they move to estuary Settlement 10.3-13.5 mm mouths to spawn during winter. Adults are silvery- Formation of fins: grey dorsally and silvery-white ventrally. Very similar Caudal <4.8–5.4 mm; Dorsal <4.8–11.3 mm; Anal to Maquaria novemaculeata, except for a snout profile <4.8 –11.3 mm; Pectoral 5.4–10.3 mm; Pelvic 6.3– that is concave and a paler colouration. Maximum size 10.3 mm 75cm but more commonly 40cm (Harris & Rowland 1996, Allen et al. 2002, Hoese et al., in press). Pigmentation Larvae are moderately pigmented with melanophores concentrated on the dorsal and Diagnostic characters ventral midlines, and midlateral surface of the trunk and tail. External: Small, expanded melanophores are • Myomeres 12-14 + 11-13 = 25 present at the tips of the upper and lower jaws. • Ratio SnL = ED until 7 mm, after which SnL<ED Melanophores are present on the snout and operculum • No spines on anterior preopercular border in line with the eye. One or 2 melanophores are • 4-7 expanded melanophores along the dorsal midline present on the ventral midline of the gular membrane, of the trunk and tail and there is one at the angle of the lower jaw.
    [Show full text]
  • Barmah Forest Ramsar Site Strategic Management Plan
    Barmah Forest Ramsar Site Strategic Management Plan Department of Sustainability and Environment Parks Victoria developed this Strategic Management Plan in conjunction with the Department of Sustainability and Environment and key stakeholders, and coordinated the public comment process on the draft document. This report was prepared with financial support from the National Wetlands Program, under the Natural Heritage Trust. © The State of Victoria, Department of Sustainability and Environment, 2003 This publication is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior permission of the State of Victoria, Department of Sustainability and Environment. All requests and enquiries should be directed to the Copyright Officer, Library Information Services, Department of Sustainability and Environment, 5/250 Victoria Parade, East Melbourne, Victoria 3002. Disclaimers This publication may be of assistance to you and every effort has been made to ensure that the information in the report is accurate. The Department of Sustainability and Environment does not guarantee that the report is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence, which may arise from you relying on any information in this publication. The views and opinions expressed in this document are those of the authors and do not necessarily reflect the views and opinions of the Commonwealth Government of Australia, the Federal Minister for Environment and Heritage, or the Department of the Environment and Heritage.
    [Show full text]
  • Labidesthes Sicculus Menidia Clarkhubbsi Order Beloniformes
    Order Atheriniformes, silversides Order Atheriniformes, Family Atherinopsidae • 6 families, 48 genera, 312 species • Formerly part of family Atherinidae • 2 separate dorsal fins • Two are now split into new world (Atherinopsidae) from North, Central Labidesthes sicculus • Lateral line absent or reduced and South America and old world (Atherinidae). Map is pre-split. • Global distribution Menidia clarkhubbsi Leuresthes tenuis – California grunion Order Atheriniformes, Family Melanotaeiinae, Rainbowfishes Order Beloniformes, needlefishes • Formerly part of Atheriniformes • Mostly freshwater • New Guinea and Australia • 5 families, 36 genera, 227 species • More colorful than other silversides, • Single dorsal fin, no spines popular in aquaria 1 Order Beloniformes, Family Exocoetidae, flying fishes Order Beloniformes, Family Hemiramphidae, halfbeaks • Lower caudal lobe longer • Upper jaw much shorter than lower • Mostly coastal, marine, tropical • Some livebearers with maternal connection to offspring (analogous to placenta) https://www.youtube.com/watch?v=OmWRCdUw17E Order Cyprinodontiformes, Killifish Order Cyprinodontiformes, Family Anablepidae, four-eyed fishes • 10 families, 109 genera, 1013 species • Southern Mexico, Central and South America • Protrusible jaws • Mostly freshwater & brackish • Internal fertilization, some live bearers, some lay fertilized eggs • Small, omnivorous • Sexual dimorphism and some hermaphrodites 2 Order Cyprinodontiformes, Family Rivulidae Order Cyprinodontiformes, Family Fundulidae • 40 species • Florida,
    [Show full text]