Advancing Molecular Diagnostics in Sudden Unexplained Deaths
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nebulette Is a Powerful Cytolinker Organizing Desmin and Actin in Mouse Hearts
M BoC | ARTICLE Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts Daniel A. Hernandeza,†, Christina M. Bennetta,†, Lyubov Dunina-Barkovskayaa, Tatjana Wedigb, Yassemi Capetanakic, Harald Herrmannb,d, and Gloria M. Conovera,* aDepartment of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474; bDivision of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; cCenter of Basic Research, Biomedi- cal Research Foundation Academy of Athens, Athens 11527, Greece; dInstitute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany ABSTRACT In the hearts of patients bearing nebulette mutations, a severe general disorgani- Monitoring Editor zation in cardiomyocytes of the extrasarcomeric desmin intermediate filament system is fre- Robert D. Goldman quently observed. However, the molecular and functional relationship between the desmin Northwestern University cytoskeleton and nebulette-containing sarcomeres is still unclear. Here we report a high-affinity Received: Apr 18, 2016 in vitro interaction between nebulette and desmin filaments. A major interaction site has been Revised: Aug 31, 2016 mapped to the desmin α-helical rod domain, indicating that the filament core is directly in- Accepted: Oct 5, 2016 volved in the binding of nebulette. The disease-mutant desmin variants E245D and T453I ex- hibited increased binding affinity for nebulette, delayed filament assembly kinetics, and caused significant weakening of networks. In isolated chick cardiomyocytes and sections from canine heart, we revealed by ground-state depletion and confocal microscopies that module 5 of nebulette extends outward from Z-disk–associated desmin filaments toward the center of the sarcomere. Accordingly, in the myocardium of Des−/− mice, elevated levels of cardiac actin cor- related with alterations in the distribution of nebulette. -
The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts. -
Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure. -
List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0 -
Variants in the KCNE1 Or KCNE3 Gene and Risk of Ménière’S Disease: a Meta-Analysis
Journal of Vestibular Research 25 (2015) 211–218 211 DOI 10.3233/VES-160569 IOS Press Variants in the KCNE1 or KCNE3 gene and risk of Ménière’s disease: A meta-analysis Yuan-Jun Li, Zhan-Guo Jin and Xian-Rong Xu∗ The Center of Clinical Aviation Medicine, General Hospital of Air Force, Beijing, China Received 1 August 2015 Accepted 8 December 2015 Abstract. BACKGROUND: Ménière’s disease (MD) is defined as an idiopathic disorder of the inner ear characterized by the triad of tinnitus, vertigo, and sensorineural hearing loss. Although many studies have evaluated the association between variants in the KCNE1 or KCNE3 gene and MD risk, debates still exist. OBJECTIVE: Our aim is to evaluate the association between KCNE gene variants, including KCNE1 rs1805127 and KCNE3 rs2270676, and the risk of MD by a systematic review. METHODS: We searched the literature in PubMed, SCOPUS and EMBASE through May 2015. We calculated pooled odds ra- tios (OR) and 95% confidence intervals (CIs) using a fixed-effects model or a random-effects model for the risk to MD associated with different KCNE gene variants. The heterogeneity assumption decided the effect model. RESULTS: A total of three relevant studies, with 302 MD cases and 515 controls, were included in this meta-analysis. The results indicated that neither the KCNE1 rs1805127 variant (for G vs. A: OR = 0.724, 95%CI 0.320, 1.638, P = 0.438), nor the KCNE3 rs2270676 variant (for T vs. C: OR = 0.714, 95%CI 0.327, 1.559, P = 0.398) was associated with MD risk. -
Integrative Analyses Identify Potential Key Genes and Pathways in Keshan
medRxiv preprint doi: https://doi.org/10.1101/2021.03.12.21253491; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Integrative analyses identify potential key genes and pathways in Keshan disease using whole-exome sequencing Jichang Huang1#, Chenqing Zheng2#, Rong Luo1#, Mingjiang Liu3, Qingquan Gu4, Jinshu Li5, Xiushan Wu6, Zhenglin Yang3, Xia Shen2*, Xiaoping Li3* 1 Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People’s Republic of China 2 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China 3 Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China 4 Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen, China 5 Institute of Endemic Disease, Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China 6 The Center of Heart Development, College of Life Sciences, Hunan Norma University, Changsha, China #, These authors contributed equally to this work. *, Authors for correspondence. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.03.12.21253491; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. -
S100A10 in Cancer Progression and Chemotherapy Resistance: a Novel Therapeutic Target Against Ovarian Cancer
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 October 2018 doi:10.20944/preprints201810.0318.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 4122; doi:10.3390/ijms19124122 Review S100A10 in Cancer Progression and Chemotherapy Resistance: A Novel Therapeutic Target against Ovarian Cancer Tannith M Noye1, Noor A Lokman1 Martin K Oehler1, 2 and Carmela Ricciardelli1,* 1 Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia emails: [email protected] (T.M.N.); [email protected] (N.A.L.); [email protected] (M.K.O); [email protected](C.R) 2 Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia * Correspondence: [email protected]; Tel.: +61-0883138255 Abstract: S100A10, which is also known as p11 is located in the plasma membrane and forms a heterotetramer with annexin A2. The heterotetramer, comprising of 2 subunits of annexin A2 and S100A10, activates the plasminogen activation pathway which is involved in cellular repair of normal tissues. Increased expression of annexin A2 and S100A10 in cancer cells leads to increased levels of plasmin which promote degradation of the extracellular matrix, increased angiogenesis and invasion of the surrounding organs. Although many studies have investigated the functional role of annexin A2 in cancer cells including ovarian cancer, S100A10 has been less studied. We recently demonstrated that high stromal annexin A2 and high cytoplasmic S100A10 expression is associated with a 3.4 fold increased risk of progression and 7.9 fold risk of death in ovarian cancer patients. -
Kvlqt1, a Voltage-Gated Potassium Channel Responsible for Human Cardiac Arrhythmias
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 4017–4021, April 1997 Medical Sciences KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias WEN-PIN YANG,PAUL C. LEVESQUE,WAYNE A. LITTLE,MARY LEE CONDER,FOUAD Y. SHALABY, AND MICHAEL A. BLANAR* Department of Cardiovascular Drug Discovery, Bristol–Myers Squibb Pharmaceutical Research Institute, Route 206 and Provinceline Road, Princeton, NJ 08543-4000 Communicated by Leon E. Rosenberg, Bristol–Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, January 29, 1997 (received for review November 13, 1996) ABSTRACT The clinical features of long QT syndrome amplifying adult human cardiac and pancreas cDNA libraries result from episodic life-threatening cardiac arrhythmias, or Marathon-Ready cDNAs (CLONTECH) using primers specifically the polymorphic ventricular tachycardia torsades derived from the S1 and S2 region of the partial KVLQT1 de pointes. KVLQT1 has been established as the human cDNA sequence described previously (1). PCR products were chromosome 11-linked gene responsible for more than 50% of gel-purified, subcloned, and sequenced. Primers subsequently inherited long QT syndrome. Here we describe the cloning of were designed from the sequences containing the candidate 59 a full-length KVLQT1 cDNA and its functional expression. end of KVLQT1 and were used for a second round of 59 RACE. KVLQT1 encodes a 676-amino acid polypeptide with struc- This procedure was repeated until no additional 59 end cDNA tural characteristics similar to voltage-gated potassium chan- sequence was obtained. Random-primed 32P-labeled DNA nels. Expression of KvLQT1 in Xenopus oocytes and in human probes containing specific regions of KVLQT1 sequence were embryonic kidney cells elicits a rapidly activating, K1- used for screening of cDNA libraries and Northern blot selective outward current. -
Control Qpatch Htx Multi-Hole
41577_Poster 170x110.qxd:Poster 170x110 07/04/10 8:52 Side 1 SOPHION BIOSCIENCE A/S SOPHION BIOSCIENCE, INC. SOPHION JAPAN Baltorpvej 154 675 US Highway One 1716-6, Shimmachi ENHANCING THROUGHPUT WITH MULTIPLE DK-2750 Ballerup North Brunswick, NJ 08902 Takasaki-shi, Gumma 370-1301 DENMARK USA JAPAN [email protected] Phone: +1 732 745 0221 Phone: +81 274 50 8388 CELL LINES PER WELL WITH THE QPATCH HTX www.sophion.com www.sophion.com www.sophion.com HERVØR LYKKE OLSEN l DORTHE NIELSEN l MORTEN SUNESEN QPATCH HTX MULTI-HOLE: TEMPORAL CURRENT QPATCH HTX MULTI-HOLE: PHARMACOLOGICAL SEPARATION BASED ON DISCRETE RECORDING SEPARATION BASED ON ION CHANNEL INHIBITORS TIME WINDOWS KvLQT1/minK (KCNQ1/KCNE1) INTRODUCTION Kv1.5 (KCNA5) ABRaw traces (A) and Hill plot (B) for XE991. ABC hERG and Nav1.5 blocked by E-4031 and The QPatch HTX automated patch clamp technology was developed to 1) increase throughput in ion channel drug TTX, respectively. screening by parallel operation of 48 multi-hole patch clamp sites, each comprising 10 individual patch clamp holes, in a single measurements site on a QPlate X, and 2) diminish problems with low-expressing cell lines. Thus, parallel recording from 10 cells represents a 10-fold signal amplification, and it increases the success rate at each site substantially. To further increase throughput we explored the possibility of simultaneous recording of a number of ion channel currents. IC50 (μM) XE991 Two or three cell lines, each expressing a specific ion channel, were applied at each site simultaneously. The ion channel Measured Literature currents were separated temporally or pharmacologically by proper choices of voltage protocols or ion channel KvLQT1 3.5±1.0 (n=12) 1-6 (Ref. -
Non-Coding Rnas in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases
Review Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases Estefania Lozano-Velasco 1,2 , Amelia Aranega 1,2 and Diego Franco 1,2,* 1 Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; [email protected] (E.L.-V.); [email protected] (A.A.) 2 Fundación Medina, 18016 Granada, Spain * Correspondence: [email protected] Abstract: Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases. Keywords: cardiac arrhythmia; microRNAs; lncRNAs; cardiac action potential Citation: Lozano-Velasco, E.; Aranega, A.; Franco, D. Non-Coding RNAs in the Cardiac Action Potential 1. The Electrical Components of the Adult Heart and Their Impact on Arrhythmogenic The adult heart is a four-chambered organ that propels oxygenated blood to the entire Cardiac Diseases. Hearts 2021, 2, body. It is composed of atrial and ventricular chambers, each of them with distinct left and 307–330. -
Disrupted Mechanobiology Links the Molecular and Cellular Phenotypes
bioRxiv preprint doi: https://doi.org/10.1101/555391; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Disrupted Mechanobiology Links the Molecular and Cellular 2 Phenotypes in Familial Dilated Cardiomyopathy 3 4 Sarah R. Clippinger1,2, Paige E. Cloonan1,2, Lina Greenberg1, Melanie Ernst1, W. Tom 5 Stump1, Michael J. Greenberg1,* 6 7 1 Department of Biochemistry and Molecular Biophysics, Washington University School 8 of Medicine, St. Louis, MO, 63110, USA 9 10 2 These authors contributed equally to this work 11 12 *Corresponding author: 13 Michael J. Greenberg 14 Department of Biochemistry and Molecular Biophysics 15 Washington University School of Medicine 16 660 S. Euclid Ave., Campus Box 8231 17 St. Louis, MO 63110 18 Phone: (314) 362-8670 19 Email: [email protected] 20 21 22 Running title: A DCM mutation disrupts mechanosensing 23 24 25 Keywords: Mechanosensing, stem cell derived cardiomyocytes, muscle regulation, 26 troponin, myosin, traction force microscopy 1 bioRxiv preprint doi: https://doi.org/10.1101/555391; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a 29 major indicator for heart transplant. The disease is frequently caused by mutations of 30 sarcomeric proteins; however, it is not well understood how these molecular mutations 31 lead to alterations in cellular organization and contractility. -
Dilated Cardiomyopathy Caused by Truncating Titin Variants
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Med Genet Dilated cardiomyopathy caused by truncating titin variants – Long-term outcomes, arrhythmias, response to treatment and sex differences SUPPLEMENTARY MATERIAL Christoffer Rasmus Vissing1*, MD; Torsten Bloch Rasmussen2, MD, PhD; Anne Mette Dybro2, MD; Morten Salling Olesen3,4, MSc, PhD; Lisbeth Nørum Pedersen5; MSc, PhD; Morten Jensen, MD, PhD2; Henning Bundgaard1, MD, DMSc; Alex Hørby Christensen1,6 MD, PhD 1The Capital Region’s Unit for Inherited Cardiac Diseases, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 2Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark 3Laboratory for Molecular Cardiology, University of Copenhagen, Copenhagen, Denmark 4Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark 5Department of Molecular Medicine, Aarhus University Hospital, Denmark. 6Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark *Corresponding author: Christoffer Rasmus Vissing, MD The Capital Region’s Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark, E-mail: [email protected]; Phone +45 3545 5045 1 Vissing CR, et al. J Med Genet 2020;0:1–10.