Hind Wings of Selected Water Boatmens (Heteroptera

Total Page:16

File Type:pdf, Size:1020Kb

Hind Wings of Selected Water Boatmens (Heteroptera ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Petr Jan, Papacek Miroslav Artikel/Article: Hind wings of selected water boatmens (Heteroptera, Corixidae, Cymatiainae, Corixinae) from Central Europe 543-556 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Hind wings of selected water boatmens (Heteroptera, Corixidae, Cymatiainae, Corixinae) from Central Europe1 J. PETR & M. PAPÁCEKˇ Abstract: We studied the hind wing venation of twenty two species of water boatmen (Corixidae) from Central Europe. The patterns we found are compared and figured. Although the architecture of the hind wings of Cymatiainae and Corixinae is relatively uniform, we found interspecific differences in both characters and morphometrics among genera and subgenera. Differences between congeneric species are small. We found no distinct hind wing autapomorphies for genera and subgenera, but noted possible anagenetic trends for wing structure in these clades. We propose a reinterpretation of corixid hind wing venation linked to the hind wing morphology of the Hemineoptera. Key words: Central Europe, Corixidae, hind wing, venation. Introduction modest departures from her interpretations of wing venation in the Nepomorpha and The hind wings of Hemineoptera and Gerromoprha (POPOV 1971; PETR 1987; Endopterygota have been reduced through MAHNER 1993; PAPÁCEKˇ & PETR 1993). evolutionary time. Wings of many taxa have More recently however; the studies of HAAS lost most of their ancestral veinal branches & KUKALOVÁ-PECK (2001: fig. 16) and and cross-veins but, numerous fusion braces KUKALOVÁ-PECK & LAWRENCE (2004: fig. 2) and cross-vein braces have been added. posit a somewhat different interpretation Larger forewings have assumed the primary and homologize hind wing venation in the role in flight and the hind wings have been Hemineoptera + Endopterygota. The con- selected to contribute to a unitary flight sur- trasting views of Puchkova’s and Kukalová- face by mechanisms that couple the hind Peck et al. concerning corixid and hemineo- wings to the forewings (e.g. WOOTTON & pteran hind wings is presented in Table 1. KUKALOVÁ-PECK 2000; KUKALOVÁ-PECK & LAWRENCE 2004). Water bug (Nepomorpha) Nearly twenty years ago, PETR (1987) wings including the Corixidae conform to briefly studied hind wing venation in water these general evolutionary trends (see PA- bugs samples from the fauna of the former PÁCEKˇ & TRÍSKAˇ 1992). PUCHKOVA (1961, Czechoslovakia. However, this study was 1967) studied the hind wing morphology of based on single specimens or at most a few several aquatic and semiaquatic bugs and re- examples of each species and may not have ported that their hind wings are reduced in encompassed the full range of intraspecific many respects by comparison with homolo- variation. Consequently, we undertook this gous structures in other insects. She figured present study which is based on a larger the axillary region of the hind wing of Sigara number of specimens collected over an ex- striata (PUCHKOVA 1961: 83, fig.1) and of tended period of time representing each of Sigara linnaei (= Hesperocorixa linnaei) the species. This larger study was motivated (PUCHKOVA 1967: 125-126, figs 1.1, 2.2) to by three objectives: (i) report on possible in- exemplify her views. Later students of water tergeneric, intersubgeneric, and interspecif- bug morphology and phylogeny offer only ic differences of hind wing venation, (ii) Denisia 19, zugleich Kataloge der OÖ. Landesmuseen 1 This paper is dedicated to the eminent Austrian heteropterist Ernst Heiss on the occasion of his 70th birthday. Neue Serie 50 (2006), 543–556 543 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at create a schema for the hind wing venation men arrays that would permit such compar- of the most common Central European isons. The numbers of specimens examined species of Cymatiainae and Corixinae, and for each species are provided in Table 3. Due (iii) bring our synthesis of current knowl- to unequal sample size among species, col- edge to the reinterpretation of hind wing lection localities, and collecting date, we venation in the Nepomorpha. did not attempt to perform statistical analy- ses, but simply report ranges (minimum and maximum). Material and Methods Terminology, abbreviations and Species studied degree of sclerotization coding Our study included the most common Our terminology and reinterpretation of Central European species of Corixidae (see hind wing venation for the Hemineoptera e.g., JANSSON 1986, 1995; KMENT & SMÉKAL follows HAAS & KUKALOVÁ-PECK (2001) 2002; RABITSCH 2004; ZETTEL 1995) and and KUKALOVÁ-PECK & LAWRENCE (2004). some less common species that were reason- Abbreviations are explained in Fig. 1, Tab. 1 ably represented in our collections. All of and Tab. 3. “Rudiments of crossing veins“ the specimens we examined were macro- are abbreviated as “cv“ in the text. Our con- pterous. Table 2 gives a list of the species ex- vention for specimen orientation is as fol- amined for this study. lows: Anteriorally = toward the radial mar- gin of the wing; Posteriorally = toward the Method of examination anal margin of the wing. Wings’ axillary Both alcoholic and pinned specimens sclerites and veins exhibit different degrees were relaxed in hot water or glycerol and of sclerotization as evidenced by density and their hind wings removed. Wings were un- degree of pigmentation. We encoded this folded with the aid of insect pins and information in drawings as follows: blackish mounted on slides with glycerol or Euparal, = heavily sclerotized; gray = modestly scle- Merck. The mounted specimens were exam- rotized; and white = lightly sclerotized. ined and measured with a Leica MZ 9.5 Veins that are lightly sclerotized are repre- stereoscope and Olympus BX41 compound sented by broken lines; normally sclerotized microscope at magnifications of from 10x to veins are represented by solid lines. 200x. We paid special attention to folds and venation. Axillaria were not studied in de- Results tail. Seven characters were measured (Tab. 3, Fig. 1): hind wing “length“ (= bas-rema), Hind wing morphology of the examined hind wing “width“ (= rm-ana), two dis- species is illustrated in Figs 2-23. Morpho- tances on veins in remigial lobe of hind metric data as well as selected morphologi- wing (= Dis1, Dis2), and angles between cal characters are presented in Table 3. Be- wing folds and margins (= a1, a2, a3). low, we provide descriptions that emphasize diagnostic characters for species or higher Three indices were calculated as ratios taxa. using quantitative data: I1 is the ratio of body length to hind wing length; I2 is the Cymatiainae ratio of hisnd wing length to width and I3 is Cymatia (Figs 2-4). Wings triangular the ratio of Dis1 to Dis2. A microfilm read- (C. bonsdorffii) to trapezoidal. Terminal er (Documator, Carl Zeiss, Jena) and a cam- (distal) part of R+MA straight (C. bonsdorf- era lucida were employed to produce draw- fii), slightly (C. rogenhoferi) to distinctly (C. ings of wing structures. Right wings were fig- coleoptrata) concave. C. coleoptrata (Fig. 3) ured in dorsal view. The original drawings with relatively long wings and reduced ve- were scanned and finished for publication in nation (reduced veins: Rtb, CuAtb, AA4, Coreldraw 11. AP3+4). C. rogenhoferi (Fig. 4) with some- We occasionally looked for intraspecific, times indistinguishable icf, but with distinct intersexual, geographic and temporal differ- marginal incision. The presence of AA vein ences in hind wing venation among speci- of unclear origin situated anterior of AA3+4 544 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Figs 1-5: Hind wings of Cymatia and Glaenocorisa spp. (1) hind wing scheme including morphometrical characters measured (only R+M+CuA complex of veins illustrated, folds and other veins omitted): a1 - angle between fore (“radial“) margin of the wing and claval fold, a2 - angle between claval and anal fold, a3 - angle between anal fold and inner (“jugal“) margin of the wing, bas-rema - distance from the base of R+M to the apex of remigium (= length of the wing), Dis1 - distance from base of R+M to the branching of R, Dis2 - distance from the base of R+M to the branching of MP, rm-ana - distance from the radial (anterior) margin of the wing to the anojugal posterior apex (= width of the wing) (2) Cymatia bonsdorffii (3) Cymatia coleoptrata (4) Cymatia rogenhoferi (5) Glaenocorisa propinqua. 545 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at is a unique character for C. bonsdorffii (Fig. AA3+4 distally open. H. moesta (Fig. 12): 2) within the Cymatia spp. examined. In- Rtb convex, approximately the same length conspicuous and shallow marginal anojugal as CuAtb, MP branching slightly concave, incision present only in C. rogenhoferi. CuPcv reduced. H. sahlbergi (Fig. 13): pres- Small intraspecific variability of venation ence of minute posterior cv on CuAtb, MP was noted only in the reduction of AP3+4 branching distinctly concave, Rtb convex in C. coleoptrata. distinctly longer than CuAtb. Shallow ano- jugal marginal incision present in H. linnaei Corixinae and H. moesta, absent in H. castanea and H. Glaenocorisini sahlbergi. Small intraspecific variability was Glaenocorisa propinqua (Fig. 5). Wing noted in the reduction of AA4tb. distinctly trapezoidal, relatively long. Com- Paracorixa concinna (Fig. 8). Wing plex of axillary sclerites and basal part of trapezoidal. CuA posterodistal and AA3 an- AA3+4 (= Mediale 2 (Me2) sensu POPOV terodistal cv present. Anojugal marginal in- (1971); = anal anterior basivenale 3+4 cision absent. Only small intraspecific vari- (BA3+4) sensu HAAS & KUKALOVÁ-PECK ability in the reduction of AA4tb was not- (2001) and associated sclerites, and basal ed. part of AA3 + 4) distally distinctly broader than proximally. CuP without cv, AP3+4 Sigara (Microsigara) hellensii (Fig. 23). short, reduced. More or less without in- Wing trapezoidal. Relatively long and nar- traspecific variability. row. CuA with posterior cv, CuP with three cv (two anterior).
Recommended publications
  • Spezialpraktikum Aquatische Und Semiaquatische Heteroptera SS 2005
    Spezialpraktikum Aquatische und Semiaquatische Heteroptera SS 2005 Hinweise zum Bestimmungsschlüssel Das Skriptum ist für den Privatgebrauch bestimmt. Alle Angaben wurden nach bestem Wissen überprüft, Fehler sind aber nicht auszuschließen. Für Anmerkungen und Korrekturen bin ich sehr dankbar. Alle Abbildungen wurden der Literatur entnommen (siehe Literaturverzeichnis) und sind nicht Maßstabsgetreu, d.h. die Größenverhältnisse sind nicht korrekt wiedergegeben. Die Gesamtverbreitungsangaben wurden aus Aukema & Rieger (1995) entnommen und sind daher nicht aktuell. Sie geben aber einen guten Eindruck von der ungefähren Verbreitung der Arten. Die verwendeten zoogeographischen Angaben sind vorläufig und rein deskriptiv zu verstehen. Die Angabe der Bundesländervorkommen in Österreich erfolgt ohne Anspruch auf Vollständigkeit (Rabitsch unveröff., Stand 2005) Wolfgang Rabitsch Wien, Juni 2005 Version 1.1 (Juli 2005) Bestimmungsschlüssel der GERROMORPHA Österreichs Bestimmungsschlüssel der GERROMORPHA Österreichs (verändert nach Andersen 1993, 1995, 1996, Savage 1989, u.a.) Familien (Abb. 1) 1 Kopf mindestens doppelt so lang wie breit, Augen deutlich vom Vorderrand des Prothorax entfernt Hydrometridae - Kopf weniger als doppelt so lang wie breit, Augen berühren fast den Vorderrand des Prothorax 2 2 Coxae inserieren in der Körpermitte, Antennen 4-gliedrig, meist apter Mesoveliidae - Coxae inserieren lateral am Thorax 3 3 Antennen scheinbar 5-gliedrig, Segment 3-5 dünner als Segment 1-2, Ocellen vorhanden Hebridae - Antennen 4-gliedrig, alle Segmente
    [Show full text]
  • F4 URS Protected Species Report 2012
    Homes and Communities Agency Northstowe Phase 2 Environmental Statement F4 URS Protected Species Report 2012 Page F4 | | Northstowe Protected Species Report July 2013 47062979 Prepared for: Homes and Communities Agency UNITED KINGDOM & IRELAND REVISION RECORD Rev Date Details Prepared by Reviewed by Approved by 2 December Version 2 Rachel Holmes Steve Muddiman Steve Muddiman 2012 Principal Associate Associate Environmental Ecologist Ecologist Consultant 4 January Version 4 Rachel Holmes Steve Muddiman Steve Muddiman 2013 Principal Associate Associate Environmental Ecologist Ecologist Consultant 5 July 2013 Version 5 Rachel Holmes Steve Muddiman Steve Muddiman Principal Associate Associate Environmental Ecologist Ecologist Consultant URS Infrastructure & Environment UK Limited St George’s House, 5 St George’s Road Wimbledon, London SW19 4DR United Kingdom PROTECTED SPECIES REPORT 2 2013 Limitations URS Infrastructure & Environment UK Limited (“URS”) has prepared this Report for the sole use of Homes and Communities Agency (“Client”) in accordance with the Agreement under which our services were performed (proposal dated 7th April and 23 rd July 2012). No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by URS. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of URS. The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by URS has not been independently verified by URS, unless otherwise stated in the Report.
    [Show full text]
  • Insecta Zeitschrift Für Entomologie Und Naturschutz
    Insecta Zeitschrift für Entomologie und Naturschutz Heft 9/2004 Insecta Bundesfachausschuss Entomologie Zeitschrift für Entomologie und Naturschutz Heft 9/2004 Impressum © 2005 NABU – Naturschutzbund Deutschland e.V. Herausgeber: NABU-Bundesfachausschuss Entomologie Schriftleiter: Dr. JÜRGEN DECKERT Museum für Naturkunde der Humbolt-Universität zu Berlin Institut für Systematische Zoologie Invalidenstraße 43 10115 Berlin E-Mail: [email protected] Redaktion: Dr. JÜRGEN DECKERT, Berlin Dr. REINHARD GAEDIKE, Eberswalde JOACHIM SCHULZE, Berlin Verlag: NABU Postanschrift: NABU, 53223 Bonn Telefon: 0228.40 36-0 Telefax: 0228.40 36-200 E-Mail: [email protected] Internet: www.NABU.de Titelbild: Die Kastanienminiermotte Cameraria ohridella (Foto: J. DECKERT) siehe Beitrag ab Seite 9. Gesamtherstellung: Satz- und Druckprojekte TEXTART Verlag, ERIK PIECK, Postfach 42 03 11, 42403 Solingen; Wolfsfeld 12, 42659 Solingen, Telefon 0212.43343 E-Mail: [email protected] Insecta erscheint in etwa jährlichen Abständen ISSN 1431-9721 Insecta, Heft 9, 2004 Inhalt Vorwort . .5 SCHULZE, W. „Nachbar Natur – Insekten im Siedlungsbereich des Menschen“ Workshop des BFA Entomologie in Greifswald (11.-13. April 2003) . .7 HOFFMANN, H.-J. Insekten als Neozoen in der Stadt . .9 FLÜGEL, H.-J. Bienen in der Großstadt . .21 SPRICK, P. Zum vermeintlichen Nutzen von Insektenkillerlampen . .27 MARTSCHEI, T. Wanzen (Heteroptera) als Indikatoren des Lebensraumtyps Trockenheide in unterschiedlichen Altersphasen am Beispiel der „Retzower Heide“ (Brandenburg) . .35 MARTSCHEI, T., Checkliste der bis jetzt bekannten Wanzenarten H. D. ENGELMANN Mecklenburg-Vorpommerns . .49 DECKERT, J. Zum Vorkommen von Oxycareninae (Heteroptera, Lygaeidae) in Berlin und Brandenburg . .67 LEHMANN, U. Die Bedeutung alter Funddaten für die aktuelle Naturschutzpraxis, insbesondere für das FFH-Monitoring .
    [Show full text]
  • Crossness Sewage Treatment Works Nature Reserve & Southern Marsh Aquatic Invertebrate Survey
    Commissioned by Thames Water Utilities Limited Clearwater Court Vastern Road Reading RG1 8DB CROSSNESS SEWAGE TREATMENT WORKS NATURE RESERVE & SOUTHERN MARSH AQUATIC INVERTEBRATE SURVEY Report number: CPA18054 JULY 2019 Prepared by Colin Plant Associates (UK) Consultant Entomologists 30a Alexandra Rd London N8 0PP 1 1 INTRODUCTION, BACKGROUND AND METHODOLOGY 1.1 Introduction and background 1.1.1 On 30th May 2018 Colin Plant Associates (UK) were commissioned by Biodiversity Team Manager, Karen Sutton on behalf of Thames Water Utilities Ltd. to undertake aquatic invertebrate sampling at Crossness Sewage Treatment Works on Erith Marshes, Kent. This survey was to mirror the locations and methodology of a previous survey undertaken during autumn 2016 and spring 2017. Colin Plant Associates also undertook the aquatic invertebrate sampling of this previous survey. 1.1.2 The 2016-17 aquatic survey was commissioned with the primary objective of establishing a baseline aquatic invertebrate species inventory and to determine the quality of the aquatic habitats present across both the Nature Reserve and Southern Marsh areas of the Crossness Sewage Treatment Works. The surveyors were asked to sample at twenty-four, pre-selected sample station locations, twelve in each area. Aquatic Coleoptera and Heteroptera (beetles and true bugs) were selected as target groups. A report of the previous survey was submitted in Sept 2017 (Plant 2017). 1.1.3 During December 2017 a large-scale pollution event took place and untreated sewage escaped into a section of the Crossness Nature Reserve. The primary point of egress was Nature Reserve Sample Station 1 (NR1) though because of the connectivity of much of the waterbody network on the marsh other areas were affected.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Position Specificity in the Genus Coreomyces (Laboulbeniomycetes, Ascomycota)
    VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 217–228 doi.org/10.3114/fuse.2018.01.09 Position specificity in the genus Coreomyces (Laboulbeniomycetes, Ascomycota) H. Sundberg1*, Å. Kruys2, J. Bergsten3, S. Ekman2 1Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2Museum of Evolution, Uppsala University, Uppsala, Sweden 3Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden *Corresponding author: [email protected] Key words: Abstract: To study position specificity in the insect-parasitic fungal genus Coreomyces (Laboulbeniaceae, Laboulbeniales), Corixidae we sampled corixid hosts (Corixidae, Heteroptera) in southern Scandinavia. We detected Coreomyces thalli in five different DNA positions on the hosts. Thalli from the various positions grouped in four distinct clusters in the resulting gene trees, distinctly Fungi so in the ITS and LSU of the nuclear ribosomal DNA, less so in the SSU of the nuclear ribosomal DNA and the mitochondrial host-specificity ribosomal DNA. Thalli from the left side of abdomen grouped in a single cluster, and so did thalli from the ventral right side. insect Thalli in the mid-ventral position turned out to be a mix of three clades, while thalli growing dorsally grouped with thalli from phylogeny the left and right abdominal clades. The mid-ventral and dorsal positions were found in male hosts only. The position on the left hemelytron was shared by members from two sister clades. Statistical analyses demonstrate a significant positive correlation between clade and position on the host, but also a weak correlation between host sex and clade membership. These results indicate that sex-of-host specificity may be a non-existent extreme in a continuum, where instead weak preferences for one host sex may turn out to be frequent.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH
    SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU I INSTITUT RUĐER BOŠKOVI Ć, ZAGREB Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij ZAŠTITA PRIRODE I OKOLIŠA Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD MEĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Specijalistički rad Osijek, 2012. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište Josipa Jurja Strossmayera u Osijeku Specijalistički rad Institit Ruđer Boškovi ć, Zagreb Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij zaštita prirode i okoliša Znanstveno područje: Prirodne znanosti Znanstveno polje: Biologija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD ME ĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Ana Kurbalija Rad je izrađen na Odjelu za biologiju, Sveučilišta Josipa Jurja Strossmayera u Osijeku Mentor: izv.prof. dr. sc. Stjepan Krčmar U ovom radu je istražen kvalitativni sastav entomof aune na četiri močvarna staništa od me đunarodnog značenja u Republici Hrvatskoj. To su Park prirode Kopački rit, Park prirode Lonjsko polje, Delta rijeke Neretve i Crna Mlaka. Glavni cilj specijalističkog rada je objediniti sve objavljene i neobjavljene podatke o nalazima vrsta kukaca na ova četiri močvarna staništa te kvalitativno usporediti entomofau nu pomoću Sörensonovog indexa faunističke sličnosti. Na području Parka prirode Kopački rit utvrđeno je ukupno 866 vrsta kukaca razvrstanih u 84 porodice i 513 rodova. Na području Parka prirode Lonjsko polje utvrđeno je 513 vrsta kukaca razvrstanih u 24 porodice i 89 rodova. Na području delte rijeke Neretve utvrđeno je ukupno 348 vrsta kukaca razvrstanih u 89 porodica i 227 rodova. Za područje Crne Mlake nije bilo dostupne literature o nalazima kukaca. Velika vrijednost Sörensonovog indexa od 80,85% ukazuje na veliku faunističku sličnost između faune obada Kopačkoga rita i Lonjskoga polja. Najmanja sličnost u fauni obada utvrđena je između močvarnih staništa Lonjskog polja i delte rijeke Neretve, a iznosi 41,37%.
    [Show full text]
  • UBC 1978 A6 7 C35.Pdf
    THE INFLUENCE OF TEMPERATURE AND SALINITY ON THE CUTICULAR PERMEABILITY OF SOME CORIXIDAE by SYDNEY GRAHAM CANNINGS B.Sc, University of British Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November, 19 77 © Sydney Graham Cannings, 1977 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ZOOLOGY The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date November 14, 1977 ABSTRACT Most terrestrial, and many aquatic insects are made waterproof by a layer of lipid in or on the epicuticle. At a specific temperature, which is determined by their composition, these lipids undergo a phase .transition which markedly increases the permeability of the integument. The major purpose of this study was to assess the possibility that epicutic.ular wax transition could differ• entially affect the distribution of four species of water boatmen: Cenocorixa bifida hungerfordi Lansbury, Ceno- corixa expleta (Uhler), Cenocorixa blaisdelli. (Hunger- ford) , and Callicorixa vulnerata (Uhler).
    [Show full text]
  • Annotated Catalogue of Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha, and Leptopodomorpha (Hemiptera: Heteroptera) of Turkey, with New Records
    Zootaxa 2856: 1–84 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2856 Annotated catalogue of Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha, and Leptopodomorpha (Hemiptera: Heteroptera) of Turkey, with new records MERAL FENT1, PETR KMENT2, BELGİN ÇAMUR-ELİPEK1 & TİMUR KIRGIZ1 1Trakya University, Faculty of Science, Department of Biology, 22030 Edirne, Turkey. E-mails: [email protected]; [email protected]; [email protected] 2Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by C. Schaefer: 25 Nov. 2010; published: 29 Apr. 2011 MERAL FENT, PETR KMENT, BELGİN ÇAMUR-ELİPEK & TİMUR KIRGIZ Annotated catalogue of Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha, and Leptopodomorpha (Hemiptera: Heteroptera) of Turkey, with new records (Zootaxa 2856) 84 pp.; 30 cm. 29 April 2011 ISBN 978-1-86977-681-7 (paperback) ISBN 978-1-86977-682-4 (Online edition) FIRST PUBLISHED IN 2011 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2011 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2856 © 2011 Magnolia Press FENT ET AL.
    [Show full text]
  • Seznam Vodních Druhů Ploštic
    SEZNAM VODNÍCH DRUH Ů PLOŠTIC (HETEROPTERA: NEPOMORPHA, GERROMORPHA) ČR PETR KMENT NEPOMORPHA Popov, 1968 NEPOIDEA Latreille, 1802 NEPIDAE Latreille, 1802 Nepinae Latreille, 1802 Nepini Latreille, 1802 Nepa cinerea Linnaeus, 1758 BM Ranatrinae Douglas & Scott, 1865 Ranatrini Douglas & Scott, 1865 Ranatra (Ranatra) linearis (Linnaeus, 1758) BM CORIXOIDEA Leach, 1815 CORIXIDAE Leach, 1815 Micronectinae Jaczewski, 1924 [Micronecta (Dichaetonecta) pusilla (Horváth, 1895)] Micronceta (Dichaetonecta) scholtzi (Fieber, 1860) BM Micronecta (Micronecta) griseola Horváth, 1899 BM Micronecta (Micronecta) minutissima (Linnaeus, 1758) BM Micronecta (Micronecta) poweri poweri (Douglas & Scott, 1869) BM Cymatiainae Walton, 1940 Cymatia bonsdorffii (C. R. Sahlberg, 1819) BM Cymatia coleoptrata (Fabricius, 1777) BM Cymatia rogenhoferi (Fieber, 1864) BM Corixinae Leach, 1815 Glaenocorisini Hungerford, 1948 Glaenocorisa propinqua (Fieber, 1860) BM Corixini Leach, 1815 Arctocorisa carinata carinata (C. R. Sahlberg, 1819) B Arctocorisa germari (Fieber, 1848) B Callicorixa praeusta praeusta (Fieber, 1848) BM Corixa affinis Leach, 1817 M Corixa dentipes Thomson, 1869 BM Corixa punctata (Illiger, 1807) BM Hesperocorixa castanea (Thomson, 1869) B Hesperocorixa linnaei (Fieber, 1848) BM Hesperocorixa moesta (Fieber, 1848) B Hesperocorixa sahlbergi (Fieber, 1848) BM Paracorixa concinna concinna (Fieber, 1848) BM Sigara (Halicorixa) stagnalis stagnalis (Leach, 1817) ?B Sigara (Microsigara) hellensii (C. R. Sahlberg, 1819) BM Sigara (Pseudovermicorixa) nigrolineata
    [Show full text]
  • Bijdragen Tot De Dierkunde, 46 (2) - 1977
    Site selection and growth of the larvae ofEylais discreta Koenike, 1897 (Acari, Hydrachnellae) by C. Davids G.J. Nielsen & P. Gehring Zoological Laboratory, University ofAmsterdam, The Netherlands Abstract Such differences in growth rate are known for Arrenurus papillator (O. F. Müller, 1776). The The distribution of the larvae of Eylais discreta on the larvae of this species have a larger size on the abdominal tergites of the host species Sigara striata, S. falleni subcosta than the anal veins of of on the wings and Cymatia coleoptrata is examined. dragonflies (Münchberg, 1963). The same holds On S. striata and S. falleni the segments 3 and 4, on C. true larvae of are for the Limnochares aquatica coleoptrata the segments 2 and 3 successively preferred. There is but little influence of multiple infestations on this (Linnaeus, 1758) attached on the prothorax of distribution. with those Gerridae, compared on the meso- and The growth rate on the various tergites of S. striata is metathorax (Pahnke, 1974). similar, while on C. coleoptrata a possible difference could not When studying these phenomena, one has to be proved statistically. The larvae of E. discreta generally study the first. hibernate on the host; during this phase there is little growth; growth not until March-April they start growing faster. The larvae on C. coleoptrataare retarded in growth compared to those on S. METHODS AND RESULTS striata. The show in larvae on S. falleni do not any increase size; this water is immune to infestation various bug species by Host insects were collected by dip net on several Hydrachnellae.
    [Show full text]