The Human Genome Project: E

Total Page:16

File Type:pdf, Size:1020Kb

The Human Genome Project: E A few highlights from the HGP databanks: n The human genome contains 3 billion chemical nucleotide bases biotech 101 (A, C, T, and G). Compare this to the laboratory mouse (2.6 billion), the fruitfly (137 million), yeast (12.1 million), and the bacterium The Human Genome Project: E. coli (4.6 million). n The average gene consists of 3,000 bases, but sizes vary greatly, looking back, looking ahead with the largest known human gene being dystrophin at 2.4 mil- ive years ago this spring, the “com- other and the environment. Furthermore, lion bases. Fpletion” of the Human Genome they didn’t have a clear understanding of n The functions are unknown for Project (HGP) was announced with much how genes keep us healthy or predispose more than 50 percent of discov- fanfare. This 13-year collaboration identi- us to disease. A representative genome ered genes. fied the sequence of the 3 billion chemi- had been sequenced, but how many dif- n The human genome sequence is cal bases of information that reside on 46 ferences would be found if peoples from almost (greater than 99 percent) chromosomes in nearly every cell in our around the world were compared? How the same in all people. body. The published DNA sequence was did the human sequence compare to n About 2 percent of the genome akin to an operations manual or book of those of other organisms? Sequencing encodes instructions for the syn- recipes, identifying the genetic instruc- the human genome raised more ques- thesis of proteins. tions for how cells build, operate, main- tions than it answered. tain and reproduce, all while responding n More than 40 percent of the Flash forward to 2008 and while ques- predicted human proteins share to varying conditions from the surround- tions still abound, scientists are begin- similarity with fruitfly or worm ing environment. (See the listing, left, for ning to compile an impressive array of proteins. some of the HGP’s findings.) The finished results. In this issue of Biotech 101, we’ll sequence was hailed as biology’s “moon- n Genes appear to be concen- examine the impact of the HGP, high- shot” – accomplished by the collabora- trated in random areas along the lighting three research areas. Just like genome, with vast expanses of tive efforts of over 2,000 scientists spread the HGP, all the information generated DNA between. across six countries. Coming in under from these resulting fields are freely budget and two years ahead of schedule, n Chromosome 1 (the largest hu- accessible by scientists and the public it was truly an amazing effort. man chromosome) has the most around the world – see the “Want more While the completion of the HGP may genes (2,968), and the Y chromo- information” section to link directly to have felt like the end of an era, in reality some has the fewest (231). the research. it was only the beginning. Scientists had very little knowledge of how cells utilized Want more information: the information found in each genetic Genetic Variation recipe to function and interact with each Any two humans are identical at the The Human Genome Project: 99.9 percent level. While there are many www.genome.gov/10001772 more similarities than differences, slight variations in our DNA can have a major The International HapMap: impact on whether or not we develop a www.hapmap.org particular disease, how we respond to ENCODE: an infection and which drugs are most www.genome.gov/10005107 effective. In order to understand the ef- fects of this genetic variation, we first A quick guide to sequenced need to identify and catalog the similari- genomes from the Genome ties and differences found across human News Network: populations. The International HapMap www.genomenewsnetwork.org/ resources/sequenced_genomes/ Project was created in 2003 to compare genome_guide_p1.shtml the genetic sequences of different in- dividuals. Internationally funded, the project is a collaboration between sci- 4 entists from Japan, Canada, the United hudsonALPHA institute for biotechnology to roosters. Since the mid 1990s, over 180 organisms have had their genomes sequenced. By compar- ing the human reference sequence with genomes of other organisms, researchers can identify areas of similarity and difference and better understand a gene’s structure and function. For example, researchers have found that two-thirds of hu- man genes known to be involved in cancer have counterparts in the fruit fly. Research using organisms such as flies, worms and mice of- fers a cost-effective way to examine the functions of these similar genes. Increased understanding of genes’ Kingdom, China, Nigeria and the United pilot set of data. Suprisingly, the organi- connections to diseases supports States. The HapMap describes where zation and function of the genome ap- opportunities for potential treat- in DNA the variants are found and how pears to be far more complicated than ments and pharmaceutical inter- they are distributed within and across most had suspected. The ENCODE ventions. world populations. The project does not data indicate that the majority of DNA Comparative genomics also pro- connect the variation to a specific illness, in the human genome has some sort of vides a powerful tool for studying but rather provides the raw information functional role. This challenges the long- evolutionary changes among or- that researchers can use to link genetic standing view that the human genome ganisms, helping to identify genes variation to disease risk. Although only a consists of a relatively small set of func- that are conserved among species few years old, the information gleaned tional elements (the genes) along with a (which may represent critical bio- by the HapMap is beginning to yield re- vast amount of so-called “junk” DNA that logical functions across the tree of sults. Working with the HapMap’s cata- is not biologically active. The new data life), as well as genes that give each log of variation, researchers have iden- indicate the genome contains very few organism its unique characteristics. tified genetic variation that contributes unused sequences and, in fact, is a com- to risk for a number of diseases, includ- plex, interwoven network. ing type 2 diabetes, Parkinson’s disease, One member of the multi-disciplin- The Future heart disorders, obesity, Crohn’s disease, ary ENCODE team is a familiar face at The completion of the Human prostate cancer and age-related macular HudsonAlpha, Dr. Richard Myers, the Genome Project has allowed re- degeneration. institute’s director. Dr. Myers’ lab is iden- searchers to initiate the shift from tifying sequences in the genome where sequence determination to func- proteins or enzymes bind and activate tional understanding. In many ways, Controls and Signals DNA sequences. He is also testing a new the real work has just begun on this ENCODE, the ENCyclopedia Of DNA approach to determine the methylation journey into the genome era. Given Elements, was launched in 2003 to de- status of specific DNA regions. Methyla- the breathtaking pace of discov- velop efficient ways of identifying and tion refers to a specific chemical modifica- ery from projects like HapMap and precisely locating all of the protein-cod- tion of DNA which can silence or reduce ENCODE and the wide array of ge- ing genes, non-protein-coding genes the activity of the affected DNA region. nomes from other organisms now and other functional components in the (Refer to the fall 2007 Biotech 101 article available for study, it will be excit- human genome. The goal of ENCODE on epigenetics for more details about ing to watch as the impact expands is to develop the parts list of biologically across biology, health and society. n functional elements and subsequently methylation and its role in gene activity.) determine the signals that activate or si- – Dr. Neil Lamb lence each of the parts, identifying how Comparative Genomics director of educational outreach HudsonAlpha Institute for Biotechnology such signals interact with each other and Comparative genomics examines and the environment. compares the genome sequences of dif- Last summer, the ENCODE team pub- ferent species - human, rat and a wide va- lished preliminary findings based on a riety of other creatures from roundworms 5 hudsonALPHA institute for biotechnology.
Recommended publications
  • Model-Based Integration of Genomics and Metabolomics Reveals SNP Functionality in Mycobacterium Tuberculosis
    Model-based integration of genomics and metabolomics reveals SNP functionality in Mycobacterium tuberculosis Ove Øyåsa,b,1, Sonia Borrellc,d,1, Andrej Traunerc,d,1, Michael Zimmermanne, Julia Feldmannc,d, Thomas Liphardta,b, Sebastien Gagneuxc,d, Jörg Stellinga,b, Uwe Sauere, and Mattia Zampierie,2 aDepartment of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; bSIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; cDepartment of Medical Parasitoloy and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; dUniversity of Basel, 4058 Basel, Switzerland; and eInstitute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved March 2, 2020 (received for review September 12, 2019) Human tuberculosis is caused by members of the Mycobacterium infection of macrophages (29–32). Beyond analyses of individual tuberculosis complex (MTBC) that vary in virulence and transmis- laboratory strains, however, no systematic characterization and sibility. While genome-wide association studies have uncovered comparative analysis of intrinsic metabolic differences across several mutations conferring drug resistance, much less is known human-adapted MTBC clinical strains has been performed. about the factors underlying other bacterial phenotypes. Variation If the metabolic and other phenotypic diversity between in the outcome of tuberculosis infection and diseases has been MTBC strains contributes to and modulates pathogenicity, an attributed primarily to patient and environmental factors, but obvious question is: Which elements of the limited genetic di- recent evidence indicates an additional role for the genetic diver- versity in the MTBC are responsible for phenotypic strain di- sity among MTBC clinical strains.
    [Show full text]
  • 6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation Using Evolutionary Signatures
    6.047/6.878 Lecture 4: Comparative Genomics I: Genome Annotation Using Evolutionary Signatures Mark Smith (Partially adapted from notes by: Angela Yen, Christopher Robde, Timo Somervuo and Saba Gul) 9/18/12 1 Contents 1 Introduction 4 1.1 Motivation and Challenge......................................4 1.2 Importance of many closely{related genomes...........................4 2 Conservation of genomic sequences5 2.1 Functional elements in Drosophila .................................5 2.2 Rates and patterns of selection...................................5 3 Excess Constraint 6 3.1 Causes of Excess Constraint.....................................7 3.2 Modeling Excess Constraint.....................................8 3.3 Excess Constraint in the Human Genome.............................9 3.4 Examples of Excess Constraint................................... 10 4 Diversity of evolutionary signatures: An Overview of Selection Patterns 10 4.1 Selective Pressures On Different Functional Elements....................... 11 5 Protein{Coding Signatures 12 5.1 Reading{Frame Conservation (RFC)................................ 13 5.2 Codon{Substitution Frequencies (CSFs).............................. 14 5.3 Classification of Drosophila Genome Sequences.......................... 16 5.4 Leaky Stop Codons.......................................... 17 6 microRNA (miRNA) genes 19 6.1 Computational Challenge...................................... 20 6.2 Unusual miRNA Genes........................................ 21 7 Regulatory Motifs 22 7.1 Computationally Detecting
    [Show full text]
  • The Distribution and Evolution of Arabidopsis Thaliana Cis Natural Antisense Transcripts Johnathan Bouchard, Carlos Oliver and Paul M Harrison*
    Bouchard et al. BMC Genomics (2015)16:444 DOI 10.1186/s12864-015-1587-0 RESEARCH ARTICLE Open Access The distribution and evolution of Arabidopsis thaliana cis natural antisense transcripts Johnathan Bouchard, Carlos Oliver and Paul M Harrison* Abstract Background: Natural antisense transcripts (NATs) are regulatory RNAs that contain sequence complementary to other RNAs, these other RNAs usually being messenger RNAs. In eukaryotic genomes, cis-NATs overlap the gene they complement. Results: Here, our goal is to analyze the distribution and evolutionary conservation of cis-NATs for a variety of available data sets for Arabidopsis thaliana, to gain insights into cis-NAT functional mechanisms and their significance. Cis-NATs derived from traditional sequencing are largely validated by other data sets, although different cis-NAT data sets have different prevalent cis-NAT topologies with respect to overlapping protein-coding genes. A. thaliana cis-NATs have substantial conservation (28-35% in the three substantive data sets analyzed) of expression in A. lyrata. We examined evolutionary sequence conservation at cis-NAT loci in Arabidopsis thaliana across nine sequenced Brassicaceae species (picked for optimal discernment of purifying selection), focussing on the parts of their sequences not overlapping protein- coding transcripts (dubbed ‘NOLPs’). We found significant NOLP sequence conservation for 28-34% NATs across different cis-NAT sets. This NAT NOLP sequence conservation versus A. lyrata is generally significantly correlated with conservation of expression. We discover a significant enrichment of transcription factor binding sites (as evidenced by CHIP-seq data) in NOLPs compared to randomly sampled near-gene NOLP-like DNA , that is linked to significant sequence conservation.
    [Show full text]
  • Transcriptional Interferences in Cis Natural Antisense Transcripts of Humans and Mice
    Copyright Ó 2007 by the Genetics Society of America DOI: 10.1534/genetics.106.069484 Transcriptional Interferences in cis Natural Antisense Transcripts of Humans and Mice Naoki Osato, Yoshiyuki Suzuki, Kazuho Ikeo and Takashi Gojobori1 Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan Manuscript received December 9, 2006 Accepted for publication March 21, 2007 ABSTRACT For a significant fraction of mRNAs, their expression is regulated by other RNAs, including cis natural antisense transcripts (cis -NATs) that are complementary mRNAs transcribed from opposite strands of DNA at the same genomic locus. The regulatory mechanism of mRNA expression by cis -NATs is unknown, although a few possible explanations have been proposed. To understand this regulatory mechanism, we conducted a large-scale analysis of the currently available data and examined how the overlapping arrange- ments of cis -NATs affect their expression level. Here, we show that for both human and mouse the expression level of cis -NATs decreases as the length of the overlapping region increases. In particular, the proportions of the highly expressed cis -NATs in all cis -NATs examined were 36 and 47% for human and mouse, respectively, when the overlapping region was ,200 bp. However, both proportions decreased to virtually zero when the overlapping regions were .2000 bp in length. Moreover, the distribution of the expression level of cis -NATs changes according to different types of the overlapping pattern of cis -NATs in the genome. These results are consistent with the transcriptional collision model for the regulatory mechanism of gene expression by cis -NATs.
    [Show full text]
  • Application of Comparative Genomics for Detection of Genomic Features and Transcriptional Regulatory Elements Hong Lu Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Application of comparative genomics for detection of genomic features and transcriptional regulatory elements Hong Lu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Cell and Developmental Biology Commons, and the Genetics and Genomics Commons Recommended Citation Lu, Hong, "Application of comparative genomics for detection of genomic features and transcriptional regulatory elements" (2011). Graduate Theses and Dissertations. 12151. https://lib.dr.iastate.edu/etd/12151 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Application of comparative genomics for detection of genomic features and transcriptional regulatory elements by Hong Lu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Bioinformatics and Computational Biology Program of Study Committee: Volker Brendel, Co-major Professor Roger Wise, Co-major Professor Julie Dickerson Nick Lauter Adam Bogdanove Iowa State University Ames, Iowa 2011 Copyright © Hong Lu, 2011. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1. INTRODUCTION
    [Show full text]
  • Comparative Genomics of Gossypium and Arabidopsis: Unraveling the Consequences of Both Ancient and Recent Polyploidy
    Article Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy Junkang Rong,1 John E. Bowers,1 Stefan R. Schulze,1 Vijay N. Waghmare,1 Carl J. Rogers,1 Gary J. Pierce,1 Hua Zhang,2 James C. Estill,1 and Andrew H. Paterson1,3 1Plant Genome Mapping Laboratory and 2Biochemistry and Molecular Biology, Life Sciences Building, University of Georgia, Athens, Georgia 30602, USA Both ancient and recent polyploidy, together with post-polyploidization loss of many duplicated gene copies, complicates angiosperm comparative genomics. To explore an approach by which these challenges might be mitigated, genetic maps of extant diploid and tetraploid cottons (Gossypium spp.) were used to infer the approximate order of 3016 loci along the chromosomes of their hypothetical common ancestor. The inferred Gossypium gene order corresponded more closely than the original maps did to a similarly inferred ancestral gene order predating an independent paleopolyploidization (␣)inArabidopsis. At least 59% of the cotton map and 53% of the Arabidopsis transcriptome showed correspondence in multilocus gene arrangements based on one or both of two software packages (CrimeStatII, FISH). Genomic regions in which chromosome structural rearrangement has been rapid (obscuring gene order correspondence) have also been subject to greater divergence of individual gene sequences. About 26%–44% of corresponding regions involved multiple Arabidopsis or cotton chromosomes, in some cases consistent with known, more ancient, duplications. The genomic distributions of multiple-locus probes provided early insight into the consequences for chromosome structure of an ancient large-scale duplication in cotton. Inferences that mitigate the consequences of ancient duplications improve leveraging of genomic information for model organisms in the study of more complex genomes.
    [Show full text]
  • Comparative Genomics for Reliable Protein-Function Prediction from Genomic Data
    340 Update TRENDS in Genetics Vol.20 No.8 August 2004 24 Yu, K. et al. (2003) R-loops at immunoglobulin class switch regions in 31 Michael, N. et al. (2003) The E box motif CAGGTG enhances somatic the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 hypermutation without enhancing transcription. Immunity 19, 25 Reaban, M.E. and Griffin, J.A. (1990) Induction of RNA-stabilized 235–242 DNA conformers by transcription of an immunoglobulin switch region. 32 Ito, S. et al. (2004) Activation-induced cytidine deaminase shuttles Nature 348, 342–344 between nucleus and cytoplasm like apolipoprotein B mRNA 26 Daniels, G.A. and Lieber, M.R. (1995) RNA:DNA complex formation editing catalytic polypeptide 1. Proc. Natl. Acad. Sci. U. S. A. 101, upon transcription of immunoglobulin switch regions: implications for 1975–1980 the mechanism and regulation of class switch recombination. Nucleic 33 McBride, K.M. et al. (2004) Somatic hypermutation is limited by Acids Res. 23, 5006–5011 CRM1-dependent nuclear export of activation-induced deaminase. 27 Shinkura, R. et al. (2003) The influence of transcriptional orientation J. Exp. Med. 199, 1235–1244 on endogenous switch region function. Nat. Immunol. 4, 435–441 34 Brar, S. et al. Activation-induced cytidine deaminase (AID) is actively 28 Longacre, A. and Storb, U. (2000) A novel cytidine deaminase affects exported out of the nucleus but retained by the induction of DNA antibody diversity. Cell 102, 541–544 breaks. J. Biol. Chem. (in press) 29 Yoshikawa, K. et al. (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts.
    [Show full text]
  • Comparative Genomics and Transcriptomics Analysis Reveals Evolution Patterns of Selection in the Salix Phylogeny
    Zhao et al. BMC Genomics (2019) 20:253 https://doi.org/10.1186/s12864-019-5627-z RESEARCH ARTICLE Open Access Comparative genomics and transcriptomics analysis reveals evolution patterns of selection in the Salix phylogeny You-jie Zhao1,2,3, Xin-yi Liu2, Ran Guo2, Kun-rong Hu2, Yong Cao2* and Fei Dai2* Abstract Background: Willows are widely distributed in the northern hemisphere and have good adaptability to different living environment. The increasing of genome and transcriptome data provides a chance for comparative analysis to study the evolution patterns with the different origin and geographical distributions in the Salix phylogeny. Results: Transcript sequences of 10 Salicaceae species were downloaded from public databases. All pairwise of orthologues were identified by comparative analysis in these species, from which we constructed a phylogenetic tree and estimated the rate of diverse. Divergence times were estimated in the 10 Salicaceae using comparative transcriptomic analysis. All of the fast-evolving positive selection sequences were identified, and some cold-, drought-, light-, universal-, and heat- resistance genes were discovered. Conclusions: The divergence time of subgenus Vetrix and Salix was about 17.6–16.0 Mya during the period of Middle Miocene Climate Transition (21–14 Mya). Subgenus Vetrix diverged to migratory and resident groups when the climate changed to the cool and dry trend by 14 Mya. Cold- and light- stress genes were involved in positive selection among the resident Vetrix, and which would help them to adapt the cooling stage. Universal- stress genes exhibited positive selection among the migratory group and subgenus Salix. These data are useful for comprehending the adaptive evolution and speciation in the Salix lineage.
    [Show full text]
  • Chapter 6. Comparative Genomics Contents 6
    Chapter 6. Comparative Genomics Contents 6. Comparative Genomics 6.1. Nucleotide and Amino Acid Substitutions 6.1.1. Sequence Similarity 6.1.2. Sequence Comparison by Alignment 6.1.3. Jukes-Cantor Model for Base Substitution 6.2. Comparative Genomic Analysis 6.2.1. Components of Comparative Genomic Analysis 6.2.2. Molecular Clocks 6.3. Molecular Phylogeny 6.3.1. Phylogenetic Trees 6.3.2. Gene Versus Species Trees 6.3.3. Methods of Reconstructing Phylogenetic Trees 6.4. Tree of Life 6.5. Genome Evolution 6.5.1. Multigene Families 6.5.2. Gene Duplication and Gene Conversion 6.5.3. Domain (Exon) Shuffling CONCEPTS OF GENOMIC BIOLOGY Page 6- 1 Before we begin our discussion of comparative genomics we may need a few discipline specific words CHAPTER 6. COMPARATIVE GENOMICS defined. These are commonly misused, and this can lead (RETURN) to confusion. As populations phenotypically change over evolutionary time, so too does their genetic structure. Molecular evolution examines DNA and proteins, Definition of HOMOLOG, ORTHOLOG AND PARALOG addressing two types of questions: 1) How have DNA and found in the NCBI Glossary • homolog/homologous – Homologous genes (homologs) are protein molecules evolved; and 2) How are genes and related to by descent from a common ancestral DNA sequence. organisms evolutionarily related? As we have seen in The term, homolog, may apply to the relationship between genes separated by the event of speciation (see ortholog) or to the section 2.7, population genetics focuses on changes in relationship between genes separated by the event of genetic population genetic structure between generations.
    [Show full text]
  • Efficient Comparative Genomics with Low Coverage Data Using PALADIN
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2020 Efficient comparative genomics with low coverage data using PALADIN Rachel Cates University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Cates, Rachel, "Efficient comparative genomics with low coverage data using PALADIN" (2020). Master's Theses and Capstones. 1338. https://scholars.unh.edu/thesis/1338 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. EFFICIENT COMPARATIVE GENOMICS WITH LOW COVERAGE DATA USING PALADIN BY RACHEL CATES THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science December. 2019 This thesis was examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Computer Science by: Thesis director, Dr. R. Daniel Bergeron, Professor Emeritus of Computer Science Dr. W. Kelley Thomas, Professor of Molecular, Cellular, and Biomedical Sciences Anthony Westbrook, Computational Scientist On December 10th 2019 Approval signatures are on file with the University of New Hampshire Graduate School. ii I wish to extend thanks to all those involved in the research and development of the PB&J tool, including: Dr. R. Daniel Bergeron, Anthony Westbrook, and Dr. W.
    [Show full text]
  • Integrated Omics: Tools, Advances and Future Approaches
    62 1 Journal of Molecular B B Misra et al. Approaches and tools in 62:1 R21–R45 Endocrinology integrated omics REVIEW Integrated omics: tools, advances and future approaches Biswapriya B Misra1, Carl Langefeld1,2, Michael Olivier1 and Laura A Cox1,3 1Center for Precision Medicine, Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North California, USA 2Department of Biostatistics, Wake Forest School of Medicine, Winston-Salem, North California, USA 3Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA Correspondence should be addressed to L A Cox: [email protected] Abstract With the rapid adoption of high-throughput omic approaches to analyze biological Key Words samples such as genomics, transcriptomics, proteomics and metabolomics, each f integrated analysis can generate tera- to peta-byte sized data files on a daily basis. These data file f omics sizes, together with differences in nomenclature among these data types, make the f genomics integration of these multi-dimensional omics data into biologically meaningful context f transcriptomics challenging. Variously named as integrated omics, multi-omics, poly-omics, trans-omics, f proteomics pan-omics or shortened to just ‘omics’, the challenges include differences in data f metabolomics cleaning, normalization, biomolecule identification, data dimensionality reduction, f network biological contextualization, statistical validation, data storage and handling, sharing and f statistics data archiving. The ultimate goal is toward the holistic realization of a ‘systems biology’ f Bayesian understanding of the biological question. Commonly used approaches are currently f machine learning limited by the 3 i’s – integration, interpretation and insights.
    [Show full text]
  • Plant Paleopolyploidy James C
    Plant Paleopolyploidy James C. Schnable1 and Eric Lyons3,4 1Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA 3School of Plant Sciences, University of Arizona, Tucson, AZ, USA 4iPlant Collaborative, Bio5 Institute, University of Arizona, Tucson, AZ, USA ABSTRACT Identifying and characterizing plant paleopolyploidies is remains an ongoing area of investigation. Ancient whole genome duplications can be identified through whole genome comparisons using a combination of the data derived from genomic structure (e.g. syntenic dotplots) and evolutionary distances (e.g. synonymous mutation rates). These methods require large genomic and/or transcriptomic datasets, and our understanding identity, placement, and timing of these ancient events continues to change as new datasets become available. The images and texzt presented here represent our best estimates using the data available at this time, but, like many things, must be seen as tentative and subject to revision as new datasets and types of analyses become available. Keywords: Comparative Genomics, Plant Comparative Genomics, Whole Genome Duplication, Plant Paleopolyploidy INTRODUCTION Figure 1. Phylogenetic tree of plant species, predominantly those with published genome sequences with known ancient whole genome duplications marked. Tree is current as of April 2013. 1 EUDICOT HEXAPLOIDY Synonyms: Arabidopsis Gamm This hexaploidy (genome tripling) is shared by the core eudicots (the rosids and asterids), and may be present in additional, basal eudicots, although it will not be possible to reach this conclusion until the genomes of species from basal lineages are sequenced and assembled to the pseudomolecule level. This whole genome duplication was first identified as the most ancient of three whole genome duplication present in the genome of Arabidopsis thaliana, and assigned the name ”gamma” by in 2003 by (Bowers et al., 2003).
    [Show full text]