Concentrating Solar Power Best Practices Study Mark Mehos,1 Hank Price,2 Robert Cable,2 David Kearney,2 2 2 2 Bruce Kelly, Gregory Kolb, and Frederick Morse

Total Page:16

File Type:pdf, Size:1020Kb

Concentrating Solar Power Best Practices Study Mark Mehos,1 Hank Price,2 Robert Cable,2 David Kearney,2 2 2 2 Bruce Kelly, Gregory Kolb, and Frederick Morse Concentrating Solar Power Best Practices Study Mark Mehos,1 Hank Price,2 Robert Cable,2 David Kearney,2 2 2 2 Bruce Kelly, Gregory Kolb, and Frederick Morse 1 National Renewable Energy Laboratory 2 Solar Dynamics, LLC NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5500-75763 Operated by the Alliance for Sustainable Energy, LLC June 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Concentrating Solar Power Best Practices Study Mark Mehos,1 Hank Price,2 Robert Cable,2 David Kearney,2 2 2 2 Bruce Kelly, Gregory Kolb, and Frederick Morse 1 National Renewable Energy Laboratory 2 Solar Dynamics, LLC Suggested Citation Mehos, Mark, Hank Price, Robert Cable, David Kearney, Bruce Kelly, Gregory Kolb, and Frederick Morse. 2020. Concentrating Solar Power Best Practices Study. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-75763. https://www.nrel.gov/docs/fy20osti/75763.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5500-75763 Operated by the Alliance for Sustainable Energy, LLC June 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308, and in part by Solar Dynamics under NREL subcontract No. NCE-8-82268-01. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Cover Photos (left to right): Warren Getz, NREL 00033; Dennis Schroeder, NREL 46198 NREL prints on paper that contains recycled content. Foreword The concentrating solar power (CSP) industry has its roots in the LUZ parabolic trough developments in California that started in the 1980s. LUZ built nine plants that demonstrated the early commercial implementation of CSP technology, providing an important source of knowledge for future CSP system development. Over the last 15 years, the CSP industry has emerged and evolved into a global industry and supply chain. CSP plants have been built in 12 different countries, with the industry now—in 2020—approaching 100 plants in commercial operation. Many companies, laboratories, institutions, and individuals have played important roles in the development and growth of this renewable source of electricity. Much learning and experience has occurred, although significant portions of this knowledge have remained internal to specific companies due to commercial interests or, in some cases, insufficient platforms suitable for sharing valuable insights. As a result, our observation is that too many lessons have had to be relearned as new plants are designed and built by new participants. Therefore, the purpose of this report is to gather valuable knowledge from the experiences of industry and stakeholders. This report is titled CSP Best Practices, but it can be more appropriately viewed as a mix of problematic issues that have been identified, along with potential solutions or approaches to address those issues. In some cases, but not all, the solutions are in fact best practices. But in other cases, they may be more accurately viewed as practices valuable for consideration or as innovative but unproven ideas to solve problems or improve operations. The report relies heavily on the feedback we have received from the CSP stakeholders interviewed in this process. We have chosen to lean on the side of sharing detailed information as well as synthesizing it into brief best practice recommendations. Many problems have been project-specific but reflect broader significance. Furthermore, a few reviewers pointed out that some of the issues chosen for inclusion are not CSP-specific, but rather are general issues common to any complex construction project of this nature. This is true, but we include them in sections of the report because such issues are vitally important to successfully develop CSP projects. Thus, to provide a broader understanding for future CSP stakeholders, our overall approach has been to address observations from stakeholders on common issues and experience related to developing and executing CSP projects. Our aim is that the reader will find the information presented here to be useful and thought- provoking, with ample examples that can serve to develop stronger CSP projects with lower project costs and improved long-term plant operation. iii This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. Acknowledgments This report was developed based on funding from the Alliance for Sustainable Energy, LLC, Managing and Operating Contractor for the National Renewable Energy Laboratory for the U.S. Department of Energy. This project received additional funding contributions by the Climate Investment Funds through the World Bank as well as the IEA SolarPACES Program, supporting both travel for the project and dissemination prior to and following publication of this report. We also acknowledge the Electric Power Research Institute for their in-kind contribution over the course of the project. We would like to acknowledge all the contributions coming from the concentrating solar power industry and other participants that have made this report possible: Aalborg, Abengoa, Acciona, ACWA, Advisian/Worley Parsons, Atlantica Yield, BrightSource, Cerro Dominador, ChemTreat, CMI, Cobra, CSP Services, DEWA, DLR, Fichtner, Flowserve, FTI, Huiyin Group, La Africana, Lointek, Masen, Mott MacDonald, Nevada Solar One, NRG, OCA Global, Parsons Corporation, Sargent & Lundy, SBP, Sener, SolarReserve, SolEngCo, SUNCAN, Terra-Gen, TSK, Virtual Mechanics, and Vast Solar. Finally, we would like to acknowledge the external review team for each of the sections, including: Section 2 – Project Organization: Georg Brakmann, Miroslav Dolejsi, Michael Eckhart, Bill Gould, Paul Nava, Nicholas Potrovitza, Fred Redell Section 3 – Project Execution: Georg Brakmann, Miroslav Dolejsi, Michael Eckhart, Bill Gould, Paul Nava, Nicholas Potrovitza, Fred Redell Section 4 – Operation & Maintenance: Antonio Gavilan, Eckhard Lüpfert, Nicholas Potrovitza Section 5 – Parabolic Trough: Georg Brakmann, Miroslav Dolejsi, Martin Eickhoff, Antonio Gavilan, Anne Schlierbach, Eduardo Zarza Section 6 – Central Receiver: Raul Navio, Jim Pacheco iv This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. List of Acronyms API American Petroleum Institute ASME American Society of Mechanical Engineers BOO build, own, and operate CAPEX capital expenditure COD commercial operation date CSP concentrating solar power Cv flow coefficient DCS distributed control system DLR German Aerospace Center DNI direct normal insolation DOE U.S. Department of Energy EPC engineering, procurement, and construction FAT final acceptance test or factory acceptance test FEED front-end engineering design FIT feed-in tariff FSC field supervisory controller HAZOP hazard and operability HCE heat-collection element HTF heat-transfer fluid I&C instrumentation and control IEA International Energy Agency IA Initial acceptance IE independent engineer ISCC integrated solar combined cycle KPI key performance indicator LE lender’s engineer LCOE levelized cost of electricity LD liquidated damage LNTP limited notice to proceed LOC local controller LOPA layers of protection analysis LOTO lock out tag out LTA lender's technical advisor LTSA long-term service agreement MCC motor control center MW megawatt MWe megawatt-electric MWt megawatt-thermal NOx nitrogen oxides NREL National Renewable Energy Laboratory NTP notice to proceed O&M operations and maintenance OE owner's engineer OPEX operating expenditure OS out-of-service v This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. OTS owner's technical specifications PLC programmable logic controller PM preventative maintenance PPA power purchase agreement PV photovoltaic QA quality assurance QC quality control RFP request for proposal RTD resistance temperature device SEGS Solar Electric Generating System SETO Solar Energy Technologies Office SGS steam generation system SME subject-matter expert SolarPACES Solar Power and Chemical Energy Systems TES thermal energy storage TMY typical meteorological year UPS uninterruptable power supply VFD variable-frequency drive VOC volatile organic compound vi This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. Executive Summary The primary objective of this Concentrating Solar Power Best Practices Study is to publish best practices and lessons learned from the engineering, construction,
Recommended publications
  • ROUND the BEND TEAM Being Through Our Efforts
    Round the bend Farm A CENTER FOR RESTORATIVE COMMUNITY 1 LETTER FROM THE It’s been an AMAZING monarch year for us here at RTB. We even offered CO-VISIONARIES a monarch class in July Desa & Nia Van Laarhoven and we’ve been hatching & Geoff Kinder some at RTB to increase s fall descends on Round the Bend Farm their odds. (RTB), vivid colors mark the passage of time. Autumn’s return grounds us amid Aeach day’s frenetic news cycles. It reminds us of the deeper cycle that connects us all to the earth and to each other. And yet one news story, from late September, has done the same. More than 7.5 million people came together in cities and villages across the planet to call in unison for an environmentally just and sustainable world. This is a story that speaks to RTB’s mission and purpose and demonstrates the concept of Restorative Community that’s so central to our existence. You can see it in the image that juxtaposed September’s global crowds with the prior year’s solitary Swedish protester. You can hear it in the words spoken by an Indigenous Brazilian teen to 250,000 people lining the streets of New York City. Restorative Community is a force multiplier for our own personal commitments to justice, health and peace. It nurtures and supports us as individuals, unites and strengthens us as a movement and harnesses our differences in service of our common goals. In community, we respect, enjoy and learn from each other. As you page through this year’s annual report, we hope you experience the same! We’re This past year, we continued to expand our inspired and encouraged by what we’ve Restorative Community at RTB, more than accomplished this year and we’re honored to doubling the number of people who visited serve our community in ever new ways.
    [Show full text]
  • Health and Safety Impacts of Solar Photovoltaics
    Filed with the Iowa Utilities Board on September 16, 2019, GCU-2019-0004 Health and Safety Impacts of Solar Photovoltaics The increasing presence of utility-scale solar photovoltaic (PV) systems (sometimes referred to as solar farms) is a rather new development in North Carolina’s landscape. Due to the new and unknown nature of this technology, it is natural for communities near such developments to be concerned about health and safety impacts. Unfortunately, the quick emergence of utility-scale solar has cultivated fertile grounds for myths and half-truths about the health impacts of this technology, which can lead to unnecessary fear and conflict. Photovoltaic (PV) technologies and solar inverters are not known to pose any significant health dangers to their neighbors. The most important dangers posed are increased highway traffic during the relative short construction period and dangers posed to trespassers of contact with high voltage equipment. This latter risk is mitigated by signage and the security measures that industry uses to deter trespassing. As will be discussed in more detail below, risks of site contamination are much less than for most other industrial uses because PV technologies employ few toxic chemicals and those used are used in very small quantities. Due to the reduction in the pollution from fossil-fuel-fired electric generators, the overall impact of solar development on human health is overwhelmingly positive. This pollution reduction results from a partial replacement of fossil-fuel fired generation by emission-free PV-generated electricity, which reduces harmful sulfur dioxide (SO2), nitrogen oxides (NOx), and fine particulate matter (PM2.5).
    [Show full text]
  • Black Soiling of an Architectural Limestone During Two-Year Term Exposure to Urban Air in the City of Granada (S Spain)
    Science of the Total Environment 414 (2012) 564–575 Contents lists available at SciVerse ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (S Spain) Maja Urosevic a,⁎, Africa Yebra-Rodríguez b, Eduardo Sebastián-Pardo a, Carolina Cardell a a Dept. Mineralogy and Petrology, Faculty of Science, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain b Dept. Geology-Associated Unit IACT (CSIC-UGR), Faculty of Experimental Science, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain article info abstract Article history: A two-year term aging test was carried out on a building limestone under different urban conditions in the Received 3 June 2011 city of Granada (Southern Spain) to assess its Cultural Heritage sustainability. For this purpose stone tablets Received in revised form 16 October 2011 were placed vertically at four sites with contrasting local pollution micro-environments and exposure condi- Accepted 10 November 2011 tions (rain-sheltered and unsheltered). The back (rain-sheltered) and the front (rain-unsheltered) faces of Available online 5 December 2011 the stone tablets were studied for each site. The soiling process (surface blackening) was monitored through lightness (ΔL*) and chroma changes (ΔC*). Additionally atmospheric particles deposited on the stone sur- Keywords: fi Building limestone faces and on PM10 lters during the exposure time were studied through a multianalytical approach includ- Black soiling ing scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM) and micro-Raman Air pollution spectroscopy.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Draft Initial Study and Mitigated Negative Declaration Leo Solar Project
    DRAFT Initial Study and Mitigated Negative Declaration LEO Solar Project November 2019 Lead Agency: Kings County 1400 West Lacey Boulevard, Building. #6 Hanford, California 93230 Prepared for: Apex Energy Solutions, LLC 604 Sutter Street, Suite 250 Folsom, California 95630 (916) 985-9461 Prepared by: 2525 Warren Drive Rocklin, California 95677 Draft Initial Study and Mitigated Negative Declaration Leo Solar Project DRAFT MITIGATED NEGATIVE DECLARATION LEO SOLAR PROJECT Lead Agency: Kings County Community Development Agency, Kings County Government Center, 1400 West Lacey Boulevard, Hanford, California 93230 Project Proponent: Apex Energy Solutions, LLC, 604 Sutter Street Suite 250, Folsom, California 95630 Project Location: The proposed Leo Solar Project (Project) occupies ±30 acres of a 40-acre parcel located near 25th Avenue 15 miles south of unincorporated Kettleman City, California (Assessor’s Parcel Number [APN] 048-350-016- 000). The project site is situated in the unincorporated area of Kings County, California, along the Kings County/Kern County border, between California State Route (SR) 33 and Interstate 5 (I-5), approximately 0.5 mile east of 25th Avenue. The site corresponds to a portion of Section 36, Township 24 South, and Range 19 East of the Mount Diablo Base and Meridian (MDBM) of the “Avenal Gap” topographic quadrangles 7.5- minute quadrangle (U.S. Geological Survey [USGS] 2015). Project Description: The Project includes the development of up to a 5-megawatt (MW) solar photovoltaic (PV) energy generating facility and battery storage system (BESS) facility on ±30 acres of 40 undeveloped acres. The facility would consist of solar PV modules mounted on stationary fixed-tilt, ground- mounted racking or single-axis trackers and would include up to 5-MW alternating current (AC) maximum capacity, four-hour battery energy storage system.
    [Show full text]
  • Energies for the 21St Century
    THE collEcTion 1 w The atom 2 w Radioactivity 3 w Radiation and man 4 w Energy 5 w Nuclear energy: fusion and fission 6 w How a nuclear reactor works 7 w The nuclear fuel cycle 8 w Microelectronics 9 w The laser: a concentrate of light 10 w Medical imaging 11 w Nuclear astrophysics 12 w Hydrogen 13 w The Sun 14 w Radioactive waste 15 w The climate 16 w Numerical simulation 17 w Earthquakes 18 w The nanoworld 19 w Energies for the 21st century © French Alternative Energies and Atomic Energy Commission, 2010 Communication Division Head Office 91191 Gif-sur-Yvette cedex - www.cea.fr ISSN 1637-5408. w Low-carbon energies for a sustainable future FROM RESEARCH TO INDUSTRY 19 w energies for the 21st century InnovatIng for nuclear energy DomestIcatIng solar power BIofuel proDuctIon DevelopIng BatterIes anD fuel cells thermonuclear fusIon 2 w contents century © Jack Star/PhotoLink st Innovating for nuclear ENERgY 6 The beginnings of nuclear energy in France 7 The third generation 8 Generation IV: new concepts 10 DEveloping batteries and fuel cells 25 Domesticating solar Lithium-ion batteries 26 pOwer 13 A different application for Thermal solar power 15 each battery 27 Photovoltaic solar power 16 Hydrogen: an energy carrier 29 Concentrated solar power 19 Thermonuclear fusion 31 BIOFUEL production 20 Tokamak research 33 Biomass 21 ITER project 34 Energies for the 21 2nd generation biofuels 22 Designed and produced by: MAYA press - Printed by: Pure Impression - Cover photo: © Jack Star/PhotoLink - Illustrations : YUVANOE - 09/2010 Low-carbon energies for a sustainable future 19 w Energies for the 21st century w> IntroIntroDuctIon 3 The depletion of fossil resources and global warming are encoura- ging the development of research into new energy technologies (on the left, Zoé, France’s first nuclear reactor, on the right, the national institute for solar power).
    [Show full text]
  • Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market
    AGENCY/PHOTOGRAPHER ASSOCIATED PRESS ASSOCIATED Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin June 2013 WWW.AMERICANPROGRESS.ORG Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin May 2013 Contents 1 Introduction and summary 3 6 reasons to support concentrating solar power 5 Concentrating solar power is a proven zero-carbon technology with high growth potential 6 Concentrating solar power can be used for baseload power 7 Concentrating solar power has few impacts on natural resources 8 Concentrating solar power creates jobs Concentrating solar power is low-cost electricity 9 Concentrating solar power is carbon-free electricity on a budget 11 Market and regulatory challenges to innovation and deployment of CSP technology 13 Low-cost policy solutions to reduce risk, promote investment, and drive innovation 14 Existing policy framework 15 Policy reforms to reduce risk and the cost of capital 17 Establish an independent clean energy deployment bank 18 Implement CLEAN contracts or feed-in tariffs Reinstate the Department of Energy’s Loan Guarantee Program 19 Price carbon Policy reforms to streamline regulation and tax treatment 20 Tax reform for capital-intensive clean energy technologies Guarantee transmission-grid connection for solar projects 21 Stabilize and monetize existing tax incentives 22 Further streamline regulatory approval by creating an interagency one-stop shop for solar power 23 Regulatory transparency 24 Conclusion 26 About the authors 27 Endnotes Introduction and summary Concentrating solar power—also known as concentrated solar power, concen- trated solar thermal, and CSP—is a cost-effective way to produce electricity while reducing our dependence on foreign oil, improving domestic energy-price stabil- ity, reducing carbon emissions, cleaning our air, promoting economic growth, and creating jobs.
    [Show full text]
  • The Effect of Soiling and Periodic Cleaning on the Performance of Solar Power Plants in Ma’An, Jordan
    Innovative Systems Design and Engineering www.iiste.org ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) Vol.9, No.1, 2018 The Effect of Soiling and Periodic Cleaning on the Performance of Solar Power Plants in Ma’an, Jordan Mohammad Zayed Ahmed * Habes Al-Khawaldeh Laith Al-Khawaldeh Ahmed Al-Tarawneh School of Electrical Engineering, Al-Hussein Bin Talal University, PO box 22, Ma’an, Jordan Abstract Environmental variables such as soiling in the outdoor environment can affect the overall efficiency of solar plants in arid regions with scarce rain negatively. The reduction in power is caused by reducing the amount of solar energy absorbed by the solar panel itself. The cleaning process of the photovoltaic can contribute to a significant cost of the plant operation cost. The objective of this work is to study the effect of soiling and the periodic cleaning process of solar cells in Ma’an district, Jordan. Yearly degradation and performance were studied in outdoor exposure between January and November of 2017. The study found that based on a one cleaning process per month, the worst scenario will cause a power degradation of 2.99% with an average of 2.22% for the whole period of the study. Keywords: Solar energy in Jordan, Soiling and Cleaning, Performance ratio, Degradation, Photovoltaic solar panels 1. Introduction The solar photovoltaic system in the studied power plant is composed of solar panels, tracking system, inverters, SCADA system and dedicated computers and software for storing, analyzing data and monitoring purpose. The solar plant cost with respect to its lifespan can be considered high, since the solar cell’s life is usually around 25 years, and it will take up to six years of operation to generate energy that is equivalent to the amount of energy used in its fabrication process (Kannan, 2006).
    [Show full text]
  • Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-19-2017 Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Takata, Erin, "Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals" (2017). Master's Projects and Capstones. 544. https://repository.usfca.edu/capstone/544 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master's Project Analysis of Solar Community Energy Storage for Supporting Hawaii’s 100% Renewable Energy Goals by Erin Takata is submitted in partial fulfillment of the requirements for the degree of: Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ...................................……….. ................................………….
    [Show full text]
  • Loddon Mallee Renewable Energy Roadmap
    Loddon Mallee Region Renewable Energy Roadmap Loddon Mallee Renewable Energy Roadmap Foreword On behalf of the Victorian Government, I am pleased to present the Victorian Regional Renewable Energy Roadmaps. As we transition to cleaner energy with new opportunities for jobs and greater security of supply, we are looking to empower communities, accelerate renewable energy and build a more sustainable and prosperous state. Victoria is leading the way to meet the challenges of climate change by enshrining our Victorian Renewable Energy Targets (VRET) into law: 25 per cent by 2020, rising to 40 per cent by 2025 and 50 per cent by 2030. Achieving the 2030 target is expected to boost the Victorian economy by $5.8 billion - driving metro, regional and rural industry and supply chain development. It will create around 4,000 full time jobs a year and cut power costs. It will also give the renewable energy sector the confidence it needs to invest in renewable projects and help Victorians take control of their energy needs. Communities across Barwon South West, Gippsland, Grampians and Loddon Mallee have been involved in discussions to help define how Victoria transitions to a renewable energy economy. These Roadmaps articulate our regional communities’ vision for a renewable energy future, identify opportunities to attract investment and better understand their community’s engagement and capacity to transition to renewable energy. Each Roadmap has developed individual regional renewable energy strategies to provide intelligence to business, industry and communities seeking to establish or expand new energy technology development, manufacturing or renewable energy generation in Victoria. The scale of change will be significant, but so will the opportunities.
    [Show full text]
  • Concentrating Solar Power Technologies
    COM/ENV/EPOC/IEA/SLT(2004)8 OECD ENVIRONMENT DIRECTORATE INTERNATIONAL ENERGY AGENCY INTERNATIONAL ENERGY TECHNOLOGY COLLABORATION AND CLIMATE CHANGE MITIGATION Case Study 1: Concentrating Solar Power Technologies Cédric Philibert International Energy Agency Organisation for Economic Co-operation and Development 2004 International Energy Agency Organisation de Coopération et de Développement Economiques Agence internationale de l'énergie COM/ENV/EPOC/IEA/SLT(2004)8 Copyright OECD/IEA, 2004 Applications for permission to reproduce or translate all or part of this material should be addressed to: Head of Publications Service, OECD/IEA 2 rue André Pascal, 75775 Paris Cedex 16, France or 9, rue de la Fédération, 75739 Paris Cedex 15, France 2 COM/ENV/EPOC/IEA/SLT(2004)8 FOREWORD This document was prepared by the OECD and IEA Secretariats at the request of the Annex I Expert Group on the United Nations Framework Convention on Climate Change. The Annex I Expert Group oversees development of analytical papers for the purpose of providing useful and timely input to the climate change negotiations. These papers may also be useful to national policy makers and other decision- makers. In a collaborative effort, authors work with the Annex I Expert Group to develop these papers. However, the papers do not necessarily represent the views of the OECD or the IEA, nor are they intended to prejudge the views of countries participating in the Annex I Expert Group. Rather, they are Secretariat information papers intended to inform Member countries, as well
    [Show full text]
  • Advances in Concentrating Solar Thermal Research and Technology Related Titles
    Advances in Concentrating Solar Thermal Research and Technology Related titles Performance and Durability Assessment: Optical Materials for Solar Thermal Systems (ISBN 978-0-08-044401-7) Solar Energy Engineering 2e (ISBN 978-0-12-397270-5) Concentrating Solar Power Technology (ISBN 978-1-84569-769-3) Woodhead Publishing Series in Energy Advances in Concentrating Solar Thermal Research and Technology Edited by Manuel J. Blanco Lourdes Ramirez Santigosa AMSTERDAM • BOSTON • HEIDELBERG LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Woodhead Publishing is an imprint of Elsevier Woodhead Publishing is an imprint of Elsevier The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom Copyright © 2017 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.
    [Show full text]