Hakea Salicifolia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Extreme Weather Events on Aboveground Net Primary Productivity and Sheep Production in the Magellan Region, Southernmost Chilean Patagonia
geosciences Article Impact of Extreme Weather Events on Aboveground Net Primary Productivity and Sheep Production in the Magellan Region, Southernmost Chilean Patagonia Pamela Soto-Rogel 1,* , Juan-Carlos Aravena 2, Wolfgang Jens-Henrik Meier 1, Pamela Gross 3, Claudio Pérez 4, Álvaro González-Reyes 5 and Jussi Griessinger 1 1 Institute of Geography, Friedrich–Alexander-University of Erlangen–Nürnberg, 91054 Erlangen, Germany; [email protected] (W.J.-H.M.); [email protected] (J.G.) 2 Centro de Investigación Gaia Antártica, Universidad de Magallanes, Punta Arenas 6200000, Chile; [email protected] 3 Servicio Agrícola y Ganadero (SAG), Punta Arenas 6200000, Chile; [email protected] 4 Private Consultant, Punta Arenas 6200000, Chile; [email protected] 5 Hémera Centro de Observación de la Tierra, Escuela de Ingeniería Forestal, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile; [email protected] * Correspondence: [email protected] Received: 28 June 2020; Accepted: 13 August 2020; Published: 16 August 2020 Abstract: Spatio-temporal patterns of climatic variability have effects on the environmental conditions of a given land territory and consequently determine the evolution of its productive activities. One of the most direct ways to evaluate this relationship is to measure the condition of the vegetation cover and land-use information. In southernmost South America there is a limited number of long-term studies on these matters, an incomplete network of weather stations and almost no database on ecosystems productivity. In the present work, we characterized the climate variability of the Magellan Region, southernmost Chilean Patagonia, for the last 34 years, studying key variables associated with one of its main economic sectors, sheep production, and evaluating the effect of extreme weather events on ecosystem productivity and sheep production. -
Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. -
Chapter 1: General Introduction and Aims
Margaret L. Stimpson Banksia spinulosa complex Chapter 1: General introduction and aims “The history of science, like the history of all human ideas, is a history of irresponsible dreams, of obstinacy, and of error. But science is one of the very few human activities perhaps the only one in which errors are systematically criticized and fairly often, in time, corrected. This is why we can say that, in science, we often learn from our mistakes, and why we can speak clearly and sensibly about making progress there.” (Popper 1963 p. 216) Proteaceae and Banksia The flowering plant family Proteaceae is predominantly distributed in the Southern Hemisphere and represents a classic Gondwanan clade, with fossils dating to c. 94 Mya, i.e., shortly after the separation of Africa from the rest of Gondwana (Guerin and Hill 2006). The family comprises about 80 genera with c. 1700 species, c.1450 of which are distributed in Australia and South Africa, which have the greatest concentrations of diversity (APG III 2009). There are also about 83 species in 8 genera in South and Central America (Prance and Plana 1998). Well known genera in the Proteaceae clade include Telopea, Protea, Banksia, Grevillea, Hakea, and Macadamia. The New South Wales floral emblem is the Waratah (Telopea speciosissima); Banksia, Grevillea, and Leucadendron are popular cut flowers, while the nuts of Macadamia integrifolia are widely grown commercially. The genus Banksia L.f. (Proteaceae subfam. Grevilleoideae) was first described on the basis of four species collected by Banks and Solander during the Cook voyage in 1770 (Thiele and Ladiges 1996; Collins et al. -
Persoonia Levis Broad-Leaved Geebung
Persoonia levis Broad-leaved Geebung Geebung is an unusual name derived from Aboriginal languages: geebung is the name used by the Dharuk in the Sydney Region, and Jibbong by the Wiradjuri1. The genus name Persoonia, to our ears, is also unusual until you find out that it is named after a Dutch mycologist (someone who studies fungi), Christiaan Hendrik Persoon. Geebungs are endemic to Australia and there are almost 100 species which, for the most part, are found in eastern Australia, and in the SW corner of Western Australia. They are mostly small trees or shrubs. This particular species, Persoonia levis, common in Sydney bushland, grows along the central and north coast of NSW, and in the SE corner of NSW and NE corner of Victoria. We are accustomed to the subtle olives, blues, greys and yellowish greens of the foliage of the Australian bush but the Broad-leaved Geebung is quite a contrast with bright, apple green foliage. The fruits, too, are unusual, round and succulent, bright green colouring to purple, very different from the dry, hard fruits of other genera in the same (Proteaceae) family, for example, Needle Bush (Hakea), Telopea (Waratah), Grevillea and Woodly Pear (Xylomelum). Geebungs are also unusual in that they have seven chromosomes that are much larger than those of other Proteaceae2. Broad-leaved Geebung has papery bark that provides some protection from bushfires. Peel back the superficial burnt bark and you will find glorious, rich crimson beneath the blackened exterior. This species also has the potential to resprout after fires, and regenerate from seed. -
Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp. -
Table of Contents Below) with Family Name Provided
1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens -
In This Issue in This Issue
No. 14 Hakea IN THIS ISSUE DHakea The first collection of This issue of Seed Notes Hakea was made in 1770 will cover the genus by Joseph Banks and Daniel Hakea. Solander from the Endeavour D Description expedition. The genus was described in 1797 by Schrader D Geographic and Wendland, and named distribution and habitat after Baron von Hake, a 19th century patron of botany, D Reproductive biology in Hanover. Plants were D Seed collection introduced into cultivation in England before that time. D Seed quality D assessment Hakea neurophylla. Photo – Sue Patrick D Seed germination D Recommended reading Description DMost hakeas are shrubs, woody and persistent; whereas ranging from small to low Grevillea has non-woody and medium height. They can non-persistent fruits. Most be useful for screening or as Hakea species have tough, groundcovers. Without fruits, pungent foliage that may be Hakea and Grevillea can be terete (needle-like), flat or confused. Both have flowers divided into segments. The with four tepals (petals and leaves are generally a similar sepals combined), an erect colour on both sides. Plants or recurved limb in bud and are usually single or multi- a similar range of leaf and stemmed shrubs, with smooth pollen presenter shapes. But bark, although there are the fruits are very different. ‘corkwood‘ hakeas with thick, Hakea fruits are generally deeply furrowed bark. Many Hakea can resprout after fire or disturbance, and these tend to be the species exhibiting multiple stems. The flowers are generally bisexual and range in colour from cream to green to pink, red, orange and mauve. -
Macadamia Tetraphylla L.)
MACADAMIA (Macadamia tetraphylla L.) Marisol Reyes M. 5 Arturo Lavín A. 5.1. Clasificación botánica El género Macadamia pertenece a la familia Proteaceae, el que incluye al menos cinco especies en Australia y diez a escala mundial. Debido a que su semilla es comestible, Macadamia integrifolia Maiden & Betche y Macadamia tetraphylla L., junto a algunos híbridos entre ambas, son las especies de esta familia que actualmente tienen importancia económica. Ambas son nativas de Australia (Nagao and Hirae, 1992). En Chile esta familia está representada por árboles de gran valor maderero como lo son, entre otras, Gevuina avellana Mol. (Avellano chileno, de fruta similar a macadamia), Embothrium coccineum Forst. (“Notro” y “Ciruelillo), Lomatia ferruginea (Cav.) R. Br., (“Fuinque”, ”Huinque”), Lomatia hirsuta (Lam.) Diels, (“Radal”) y Orites myrtoidea (Poepp. et Endl.) Benth et Hook, (“Mirtillo, Radal de hojas chicas”) (Muñoz, 1959; Sudzuki, 1996). 5.2. Origen de la especie Las macadamias originarias de Australia (entre los 25° y 31° de latitud sur), corresponden a especies relativamente nuevas en cuanto a la comercialización de su fruta y son las únicas plantas nativas de Australia que han sido incorporadas al cultivo comercial por su fruto comestible (Moncur et al., 1985). 103 M. integrifolia es originaria de los bosques húmedos subtropicales del sudeste de Queensland, lo que la hace poco tolerante a las bajas temperaturas, mientras que M. tetraphylla es de origen más meridional, lo que la hace más tolerante a áreas con clima temperado (Nagao and Hirae, 1992). La macadamia fue introducida a Hawai desde Australia hacia fines de los 1.800, pero no fue comercialmente cultivada hasta los inicios de los 1.900 (Nagao and Hirae, 1992). -
Hedges 3 Busselton and Surrounds Greater Wa, and Greater Australia
HEDGES 3 BUSSELTON AND SURROUNDS GREATER WA, AND GREATER AUSTRALIA Selection of plant species and notes on hedges - Richard Clark This list of hedge plant species includes Western Australian species and species from Greater Australia. Scientific Name Common Name Acacia cochlearis Rigid Wattle Acacia cyclops Coastal Wattle Acacia lasiocarpa Dune Moses, Panjang Acacia saligna Golden Wreath Wattle Acacia urophylla Tail-leaved Acacia Adenanthos cygnorun Common Woollybush Adenanthos sericeus Woollybush Adenanthos x cunninghamii Albany Woollybush Adriana quadripartita Coast Bitterbush Agonis flexuosa nana Allocasuarina humilis Scrub Sheoak Allocasuarina thuyoides Horned Sheoak Alyogyne hakeifolia Red-centred hibiscus Alyogyne huegelii Lilac Hibiscus Alyogyne pinoniana Sand Hibiscus Alyxia buxifolia Sea Box Atriplex cinerea Grey Saltbush Atriplex isatidea Coast Saltbush Atriplex nummularia Oldman Saltbush Banksia sessilis Parrot Bush Beaufortia squarrosa Sand Bottlebrush Beyeria viscosa Pinkwood Billardiera fusiformis Australian Bluebell Bossiaea aquifolium Water Bush Bossiaea disticha Bossiaea linophylla Golden Cascade Callistachys lanceolata Native Willow (Wonnich) Calytrix acutifolia Calytrix tetragona Common Fringe-myrtle Scientific Name Common Name Chamelaucium axillare (NOT LOCAL - WA) Esperence Wax Flower Chamelaucium floriferum subsp. diffusum Walpole Wax Chamelaucium uncinatum Geraldton Wax Chamelaucium x Verticordia 'Eric John' Chamelaucium x Verticordia 'Paddy's Pink' Correa alba White Correa Diplolaena dampieri Southern Diplolaena -
9. a 10 Year Trial with South American Trees and Shrubs with Special
9. A 10 year trial with SouthAmerican trees and shrubswith specialregard to the Ir,lothofaglzsspp. I0 6ra royndir vid suduramerikonskumtroum og runnum vid serligumatliti at Nothofagw-slogum SarenOdum Abstract The potential of the ligneous flora of cool temperate South America in arboriculture in the Faroe Isles is elucidated through experimental planting of a broad variety of speciescollected on expeditions to Patagonia and Tierra del Fuego 1975 andl9T9.Particular good results have been obtained with the southernmost origins of Nothofagus antarctica, N. betuloides, and N. pumilio, of which a total of 6.500 plants were directly transplanted from Tierra del Fuego to the Faroe Isles in 1979. Soren Odum, Royal Vet.& Agric. IJniv., Arboretum, DK-2970 Horsholm, Denmark. Introduction As a student of botany at the University of CopenhagenI got the opportunity to get a job for the summer 1960as a member of the team mapping the flora of the Faroe Isles (Kjeld Hansen 1966). State geologist of the Faroe Isles and the Danish Geological Survey, J6annesRasmussen, provided working facilities for the team at the museum, and also my co-student,J6hannes J6hansen participated in the field. This stay and work founded my still growing interest in the Faroese nature and culture, and the initial connections between the Arboretum in Horsholm and Tbrshavn developed from this early contact with J6annesRasmussen and J6hannes J6hansen. On our way back to Copenhagen in 1960 onboard "Tjaldur", we called on Lerwick, Shetland, where I saw Hebe and Olearia in some gardens. This made it obvious to me, that if the Faroe Isles for historical reasonshad been more or less British rather than Nordic, the gardensof T6rshavn would, no doubt, have been speckledwith genera from the southern Hemisphere and with other speciesand cultivars nowadays common in Scottish nurseries and gardens. -
The Flower Chain the Early Discovery of Australian Plants
The Flower Chain The early discovery of Australian plants Hamilton and Brandon, Jill Douglas Hamilton Duchess of University of Sydney Library Sydney, Australia 2002 http://setis.library.usyd.edu.au/ozlit © University of Sydney Library. The texts and images are not to be used for commercial purposes without permission Source Text: Prepared with the author's permission from the print edition published by Kangaroo Press Sydney 1998 All quotation marks are retained as data. First Published: 1990 580.994 1 Australian Etext Collections at botany prose nonfiction 1940- women writers The flower chain the early discovery of Australian plants Sydney Kangaroo Press 1998 Preface Viewing Australia through the early European discovery, naming and appreciation of its flora, gives a fresh perspective on the first white people who went to the continent. There have been books on the battle to transform the wilderness into an agriculturally ordered land, on the convicts, on the goldrush, on the discovery of the wealth of the continent, on most aspects of settlement, but this is the first to link the story of the discovery of the continent with the slow awareness of its unique trees, shrubs and flowers of Australia. The Flower Chain Chapter 1 The Flower Chain Begins Convict chains are associated with early British settlement of Australia, but there were also lighter chains in those grim days. Chains of flowers and seeds to be grown and classified stretched across the oceans from Botany Bay to Europe, looping back again with plants and seeds of the old world that were to Europeanise the landscape and transform it forever. -
TPG Index Volumes 1-35 1986-2020
Public Garden Index – Volumes 1-35 (1986 – 2020) #Giving Tuesday. HOW DOES YOUR GARDEN About This Issue (continued) GROW ? Swift 31 (3): 25 Dobbs, Madeline (continued) #givingTuesday fundraising 31 (3): 25 Public garden management: Read all #landscapechat about it! 26 (W): 5–6 Corona Tools 27 (W): 8 Rocket science leadership. Interview green industry 27 (W): 8 with Elachi 23 (1): 24–26 social media 27 (W): 8 Unmask your garden heroes: Taking a ValleyCrest Landscape Companies 27 (W): 8 closer look at earned revenue. #landscapechat: Fostering green industry 25 (2): 5–6 communication, one tweet at a time. Donnelly, Gerard T. Trees: Backbone of Kaufman 27 (W): 8 the garden 6 (1): 6 Dosmann, Michael S. Sustaining plant collections: Are we? 23 (3/4): 7–9 AABGA (American Association of Downie, Alex. Information management Botanical Gardens and Arboreta) See 8 (4): 6 American Public Gardens Association Eberbach, Catherine. Educators without AABGA: The first fifty years. Interview by borders 22 (1): 5–6 Sullivan. Ching, Creech, Lighty, Mathias, Eirhart, Linda. Plant collections in historic McClintock, Mulligan, Oppe, Taylor, landscapes 28 (4): 4–5 Voight, Widmoyer, and Wyman 5 (4): 8–12 Elias, Thomas S. Botany and botanical AABGA annual conference in Essential gardens 6 (3): 6 resources for garden directors. Olin Folsom, James P. Communication 19 (1): 7 17 (1): 12 Rediscovering the Ranch 23 (2): 7–9 AAM See American Association of Museums Water management 5 (3): 6 AAM accreditation is for gardens! SPECIAL Galbraith, David A. Another look at REPORT. Taylor, Hart, Williams, and Lowe invasives 17 (4): 7 15 (3): 3–11 Greenstein, Susan T.