<<

and Cosmology – Part II

I. People a. William and Caroline Herschel b. Friedrich Bessel c. Immanuel Kant d. Vesto Slipher e. Henrietta Leavitt f. g. Kent Ford h. i. Fritz Zwicky j. Sir Arthur Eddington II. Objects a. Cepheids b. Coma Cluster c. Virgo Cluster d. Andromeda, M31 e. Supernovae f. White-brown-red dwarfs, neutron stars, black holes, g. MACHOs, WIMPs h. Dark halo i. Clusters III. Terms a. Event horizon b. Accretion disk c. Wormhole d. Scri-plus, Scri-minus e. Copernican Principle f. Hubble time, Hubble length g. Horizon h. scales i. Chandrasekhar limit j. Baryonic k. Deceleration parameter l. Standard candle m. Lookback time n. Bolometer o. Luminosity, flux p. , Big Freeze, Big Bounce q. Loitering r. Benchmark Model s. BBN IV. Schwarzschild Spacetime and Black Holes a. Metric 1 222GM  2  GM  2 2 2 2 2 ds 1   ( c dt )   1   dr  r d  sin  d   c22 r   c r  b. Schwarzschild radius 2 2dz 2 2 2 c. Embedding Diagrams, ds1  dr  r d dr i. Black hole diagrams – Eddington-Finkelstein, Kruskal, Penrose General Relativity and Cosmology – Part II ii. Locate singularities, infinities, draw light cones, null geodesics. d. GR Tests i. Gravitational lensing ii. Precession of Mercury’s Perihelion iii. Orbit Equation, Effective Potential *2 1 2 r GmM E mr 1 2  22r mr r iv. Wormholes – characteristic features V. Cosmology v at() a. Hubble Law: v H r, z , Hubble parameter: Ht() 0 c at()

1 c b. Hubble time: H0 , Hubble length: H 0 t0 dt dt() c. Proper distance d() t c , dt() p 0 p 0  at() pe 1 z te t0 dt d. Horizon distance: d() t c , p  0 at()

at()0 e. Red shift parameter: 1z  , a ( t0 )  1. at()e dx2 f. FLRW metric: ds2 dr 2  S() r 2 d  2 , ds2  x 2 d  2 k 1 x2 g. Three types of spaces – flat, sphere, pseudosphere/hyperbolic h. Friedmann Equation

2 2 2 a8 G c i. Ht()   22 a3 R0 a 2  2 2 8Gc ii. 2 H001,    H00 2 R0 3 R0 2 H rm,0 ,0 10 iii. 2 4  3  ,0  2 , H0 a a a i. Density parameters 2  3H 3(1w ) i.  , c  , w  w,0a  m,  r c 8G 5 5 ii. CMB,0 5.0  10 ,  ,0 0.681 CMB , r,0 8.4  10

iii. m,0 0.3,  ,0  0.7 (Benchmark) j. Models

i. Curvature Only (What happens? a?, t0  ?, te  ? ) ii. Spatially Flat 2/(3 3w ) 2 t 2 1 3 2 t 1. at(),  tH00 , ()tH 0  te 3(1 w ) 8Gt0

H00() t t a. Lambda Only: a H0 a  a() t  e General Relativity and Cosmology – Part II iii. Multiple-Component Universes a da 1. Ht 0   0 rm,0 ,0  a2 1   aa2 ,0 0

2. Determining Epochs, aarm, m , tcrunch , etc. VI. Luminosity L a. Flux f  22 4 S ( r )(1 z ) 2 b. Luminosity distance dLL S ( r )(1  z ), d  d ( t0 )(1  z ),[  0] 9 c. Standard Candles – Cepheids, Supernovae Type Ia - LL4 10 sun f d. Apparent magnitude m 2.5log10 f0

L dL e. Absolute magnitude Mm 2.5log10   5log 10 L0 10 pc VII. Cosmology Timeline a. Epochs b. Baryon to photon ratio  5 105 c. (Radiative) Recombination epoch ( z1370, T  3740 K , t  240,000 yr ) p e  H  d. Photon decoupling ( z1100, T  3000 K , t  350,000 yr ) Thomson scattering ee   e. Last scattering surface f. VIII. a. Binding energies p e  H 13.6eV p n  D  2.22MeV 8 b. Tnuc6  10 K , t nuc  300 s c. He fraction, Y – primordial 24%, max 1/3  d. Beta decay n p  e  e ( n  890s ) e. Baryon-antibaryon asymmetry IX. ? a. What is inflation? b. Key problems – Flatness, Horizon, Monopole c. Particle Physics Standard Model – Glashow, Weinberg, Salam, Gell-Mann, Higgs Quarks, Baryons, Mesons, Bosons (photons, gluons, W, Z), Leptons d. Phase transitions (loss of symmetry) and unification of forces: electroweak, GUT and TOE, QED, QCD e. e-foldings, X. a. Observational tests GM b. Orbital speeds in spiral galaxies v  R