Groundbird Experiment an Experiment for CMB PolarizaOn Measurements at a Large Angular Scale from the Ground

Total Page:16

File Type:pdf, Size:1020Kb

Groundbird Experiment an Experiment for CMB Polariza�On Measurements at a Large Angular Scale from the Ground GroundBIRD Experiment an experiment for CMB polariza2on measurements at a large angular scale from the ground Osamu Tajima (KEK) The GroundBIRD group GroundBIRD’s target Probing Inflationary Universe B-modes in CMB polarization is Primordial its smoking-gun signature !! Gravitational Foregrounds Now Waves CMB First star Begin of the Universe Inflation Big Bang Dark age Recombination Re-ionization Galaxy formation Age 10-36 sec 380 Kyr 1 Myr 13.8 Gyr 2 Now Foregrounds Foregrounds Now First starCMB CMBFirst star Begin of the Begin of the Universe Universe Inflation Inflation Dark age Dark age Reionization RecombinationRecombination Reionization 10 Chaotic p=1 ) Chaotic p=0.2 2 SSB (N =47~62) 1 e -1 (uK 10 π -2 /2 10 r = 0.10 l 10-3 10-4 r = 0.01 l(l+1)C -5 Two bumps structure is expected 10 10 100 1000 3 Multipole l (=180o/θ) Primordial B-modes Natural to have an experimental target:! " "spectrum measurements, ! " "i.e. simultaneous measurements of two bumps Model predictions 10 ) Chaotic p=1 2 Chaotic p=0.2 SSB (N =47~62) 1 e (uK 10-1 π /2 -2 l 10 r = 0.10 10-3 -4 r = 0.01 l(l+1)C 10 10-5 10 100 1000 Multipole l (=180o/θ) 4 Advantage of spectrum measurements w.r.t. physics Spectrum shape allows us to distinguish ! "whether the inflation model is ! "``standard’’ or ``beyond the standard’’! Just an example… At the case of Big Bounce model by exotic quantum-gravitational effects J. Grain, A. Barrau, T. Cailleteau, J. Mielczarek, Phys.Rev.D82:123520 (2010). ``Beyond the standard’’ is also big discovery !!! 5 ""(whereas it may be dark horse targets … ) Advantage of spectrum measurements 10° 1° 0.1° Model predic+ons of Primordial B-modes 10 Chaotic p=1 E-modes ) Chaotic p=0.2 2 SSB (N =47~62) 1 e -1 Lensing B-modes (uK 10 π -2 /2 10 r = 0.10 l Primordial B-modes 10-3 -4 r = 0.01 l(l+1)C 10 10-5 10 100 1000 Mul4pole l Lensing B-modes become dominant at a small angular scale 6 Advantage of spectrum measurements Expansion of scan range is promising solu2on 10° 1° 0.1° Model predic+ons of Primordial B-modes Model predic+ons of ) Primordial B-modes 2 10 Chaotic p=1 aims to measure B-modes E-modes ) Chaotic p=0.2 2 1 SSB (N =47~62) spectrum shape (uK e π -1 Lensing B-modes (uK 10 /2 π l GroundBIRD C -2 /2 10 r = 0.10 l Primordial B-modes 10-3 Primordial B-modes l(l+1) Lensing B-modes -4 r = 0.01 l(l+1)C 10 10-5 10 Mul4pole l 100 1000 Mul4pole l Lensing B-modes become dominant at a small angular scale Large angular scale is free from the lensing B-modes 7 GroundBIRD - overview Plan to have test observa+on in CMB (FOV ±10°) Japan (early 2014). Then, instruments will be moved to Chile for science observa+ons Cold op2cs at 4K Single scan paern at Chile Mizuguchi-Dragone Dual reflector Focal plane (0.5° at 150GHz) MKIDs at 0.25 K High speed rotation Rotaon stage scan at 20 RPM! No decelera2on ! To be 1/f noise free !8 GroundBIRD’s scan strategy Very large observing area GroundBIRD: 30% of full sky Other ground-based (e.g. QUIET ~3%) Effec4vely, it is similar to the low earth orbit (LEO) scan of the satellite experiments. GroundBIRD implements “Super-LEO” scan. 9 Eliminaon of 1/f noise effects limits the scan range by the scan modulaon Usual le-right azimuth scan GroundBIRD’s high-speed (average scan speed: 3o/sec) rotaLon scan (20 rpm) 60o e.g., FOV 10o, EL 70o o 60 Fast scan is the most promising way to eliminate 1/f noise effects GroundBIRD Loss factor : A Detector’s 1/f noise A x Cl GroundBIRD maintains Δ fknee = 100 mHz No loss A = 1 at l = 6 1/f-noise-free condion No 1/f noise (even w/o con4nuous rotaon of HWP) Loss factor : A 10 Average scan speed Another 1/f noise source Effects of atmospheric fluctuaon Typical atmospheric fknee is ≈ Hz at Atacama Desert in Chile (5,000 m), whereas it is not polarized in our oBserva2on frequency Bands Simulation assuming atmospheric fknee = 10 Hz, detector’s intrinsic fknee = 100 mHz! 10% gain diff. Responses in Stokes’ Q Fourier scape Pair gain diff. induces the residual effects in polarizaon response. Calibra+on is GB’s scan freq. (0.3 Hz) important ! 11 Calibraon during CMB observaon Good demonstration! by QUIET & ABS! Difference btw sky (10K) and sparse wires (300K) makes uniform polarizaon signals Rotation in constant speed Ideal modulation O. Tajima et al. , J. Low Temp. Phys., 167, 936 (2012). 12 For the case of GroundBIRD Responses for each antenna (simulaon) 1/2 Input: Atm. fknee = 10 Hz, detector’s fknee = 100 mHz & NET = 300 uKs , ! and 10% of pair gain diff. Response as a func4on of 4me Response in Fourier scape Calibraon cos2θ response signal (1/2 of fscan) Calibraon 2 sin θ response signal (1/2 of fscan) Before / After! the calibration! sin2θ response 5 min. of data precisely calibrates the pair gain difference. 13 Calibraon also makes good syst. error control Precision of calibraon with 5 min. data T = 0.5 K! calibration Temperature anisotropy (TT) Tcalibration = 1.0 K BeYer precision with lower fknee of atmospheric fluctua2on ) 2 Systematic bias induced by! (uK π TT x pair gain diff. (0.1%) Atmospheric f at Atacama Dessert/2 knee l Prospects that we can trace B-modes ( r = 0.01) pair gain difference with 0.1% precision with the con2nuous l(l+1)C itera2on in every 5 min. Systema2c errors can Be controlled Below the level of r = 0.01 Mul4pole l 14 Systemac error control (cont.) Temperature anisotropy (TT) Angle caliBra2on also does well ) 2 Alignment of wire Systematic bias induced by! direc+on should be (uK precise π TT x pair gain diff. (0.1%) /2 EB mixing l with 0.1o of B-modes ( r = 0.01) angle precision l(l+1)C Demonstration of this calibration strategy is one of the important Mul4poletargets lof test observation 15 Status of the development Development of MKIDs with Developments of each all Japan technologies component in parallel RIKEN, NAOJ, Okayama, and KEK MKIDs See posters Rotaon stage Prototype Mirror Rotary joints for electricity and helium gas 16 Rotatable Cryocooling System Cryocooler Patent pending Vacuum chamBer Rev. Scien. Instru. 84, 055116 (2013). Wireless-LAN Scan speed x40 !! Real 4me monitoring RotaLon stage Rotary joints QUIET’s scan: ~3deg/sec Simultaneous circulaon of High pressure hoses electricity and helium gas !! (connected to the compressor) Weights on the stage for this test (~100 kg) Focal plane design High frequency detectors are useful to understand foregrounds; i.e., dust 145! 145! GHz GHz 145! 220! 145! GHz GHz GHz 145! 145! GHz GHz Design by Karatsu & NiMa (NAOJ). Please visit poster P-16 Design array sensi4vity ~ 10 uKs1/2 Posters about MKIDs • Devise R&D! P-16: K. Karatsu, ``Development of MKID camera for future ground-based CMB observaons’’ P-17: T. Noguchi, ``Influence of quasipar4cles in the intra-gap states on the noise of a MKID’’ Student P-19: H. WatanaBe, ``Hybrid MKIDs with ground-side deposi4on - A novel method for microwave detec4on with a resonator separated from an antenna’’ P-20: M. Yoshida, ``The development of MKIDs and its low nois amplifier for CMB experiment’’ • Readout system w/ common mode noise suppression! P-21: Y. Kibe, ``Low noise readout system for MKIDs with frequency-domain mul4plexing technique towards applicaon of CMB observaon’’ Summary • GroundBIRD aims to measure inflationary B-modes ``spectrum’’ from the ground! – Provides unique physics studies! • Whether Standard or Beyond-standard inflation model! • Free from lensing B-mode! • Unique technologies realize the unique physics! – High-speed rotation scan ! • Very large observing fields (fsky ~30%)New! idea is challenge !! • 1/f-noise-free conditions! Demonstration is important – Continuous calibration using sparse wires! • Good systematic error control & eliminating the effects of atm. fluctuation! – Cold optics conditions, i.e., instruments are compact! • Plan to have test observation in Japan in 2014.! • Then, we will move to Chile for scientific observations! 20 Near term plan .
Recommended publications
  • Cosmic Questions, Answers Pending
    special section | cosmic questions, Answers pending Cosmic questions, answers pending throughout human history, great missions of mission reveal the exploration have been inspired by curiosity, : the desire to find out about unknown realms. secrets of the universe such missions have taken explorers across wide oceans and far below their surfaces, THE OBJECTIVE deep into jungles, high onto mountain peaks For millennia, people have turned to the heavens in search of clues to nature’s mysteries. truth seekers from ages past to the present day and over vast stretches of ice to the earth’s have found that the earth is not the center of the universe, that polar extremities. countless galaxies dot the abyss of space, that an unknown form of today’s greatest exploratory mission is no matter and dark forces are at work in shaping the cosmos. Yet despite longer earthbound. it’s the scientific quest to these heroic efforts, big cosmological questions remain unresolved: explain the cosmos, to answer the grandest What happened before the Big Bang? ............................... Page 22 questions about the universe as a whole. What is the universe made of? ......................................... Page 24 what is the identity, for example, of the Is there a theory of everything? ....................................... Page 26 Are space and time fundamental? .................................... Page 28 “dark” ingredients in the cosmic recipe, com- What is the fate of the universe? ..................................... Page 30 posing 95 percent of the
    [Show full text]
  • Analysis of Big Bounce in Einstein--Cartan Cosmology
    Analysis of big bounce in Einstein{Cartan cosmology Jordan L. Cubero∗ and Nikodem J. Poplawski y Department of Mathematics and Physics, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA We analyze the dynamics of a homogeneous and isotropic universe in the Einstein{Cartan theory of gravity. The spin of fermions produces spacetime torsion that prevents gravitational singularities and replaces the big bang with a nonsingular big bounce. We show that a closed universe exists only when a particular function of its scale factor and temperature is higher than some threshold value, whereas an open and a flat universes do not have such a restriction. We also show that a bounce of the scale factor is double: as the temperature increases and then decreases, the scale factor decreases, increases, decreases, and then increases. Introduction. The Einstein{Cartan (EC) theory of a size where the cosmological constant starts cosmic ac- gravity provides the simplest mechanism generating a celeration. This expansion also predicts the cosmic mi- nonsingular big bounce, without unknown parameters crowave background radiation parameters that are con- or hypothetical fields [1]. EC is the simplest and most sistent with the Planck 2015 observations [11], as was natural theory of gravity with torsion, in which the La- shown in [12]. grangian density for the gravitational field is proportional The spin-fluid description of matter is the particle ap- to the Ricci scalar, as in general relativity [2, 3]. The con- proximation of the multipole expansion of the integrated sistency of the conservation law for the total (orbital plus conservation laws in EC.
    [Show full text]
  • The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
    The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible
    [Show full text]
  • White-Hole Dark Matter and the Origin of Past Low-Entropy Francesca Vidotto, Carlo Rovelli
    White-hole dark matter and the origin of past low-entropy Francesca Vidotto, Carlo Rovelli To cite this version: Francesca Vidotto, Carlo Rovelli. White-hole dark matter and the origin of past low-entropy. 2018. hal-01771746 HAL Id: hal-01771746 https://hal.archives-ouvertes.fr/hal-01771746 Preprint submitted on 20 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 White-hole dark matter and the origin of past low-entropy Francesca Vidotto University of the Basque Country UPV/EHU, Departamento de F´ısicaTe´orica,Barrio Sarriena, 48940 Leioa, Spain [email protected] Carlo Rovelli CPT, Aix-Marseille Universit´e,Universit´ede Toulon, CNRS, case 907, Campus de Luminy, 13288 Marseille, France [email protected] Submission date April 1, 2018 Abstract Recent results on the end of black hole evaporation give new weight to the hypothesis that a component of dark matter could be formed by remnants of evaporated black holes: stable Planck-size white holes with a large interior. The expected lifetime of these objects is consistent with their production at reheating. But remnants could also be pre-big bang relics in a bounce cosmology, and this possibility has strong implications on the issue of the source of past low entropy: it could realise a perspectival interpretation of past low entropy.
    [Show full text]
  • Pushing the Limits of Time Beyond the Big Bang Singularity: Scenarios for the Branch Cut Universe
    Received 05 april 2021; Revised 11 april 2021; Accepted 17 april 2021 DOI: xxx/xxxx ARTICLE TYPE Pushing the limits of time beyond the Big Bang singularity: Scenarios for the branch cut universe César A. Zen Vasconcellos*1,2 | Peter O. Hess3,4 | Dimiter Hadjimichef1 | Benno Bodmann5 | Moisés Razeira6 | Guilherme L. Volkmer1 1Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil In this contribution we identify two scenarios for the evolutionary branch cut uni- 2International Center for Relativistic verse. In the first scenario, the universe evolves continuously from the negative Astrophysics Network (ICRANet), Pescara, Italy complex cosmological time sector, prior to a primordial singularity, to the positive 3Universidad Nacional Autónoma de one, circumventing continuously a branch cut, and no primordial singularity occurs Mexico (UNAM), México City, México in the imaginary sector, only branch points. In the second scenario, the branch cut 4Frankfurt Institute for Advanced Studies (FIAS), J.W. von Goethe University and branch point disappear after the realisation of the imaginary component of the (JWGU), Hessen, Germany complex time by means of a Wick rotation, which is replaced by the thermal time. In 5 Unversidade Federal de Santa Maria the second scenario, the universe has its origin in the Big Bang, but the model con- (UFSM), Santa Maria, Brazil 6Laboratório de Geociências Espaciais e templates simultaneously a mirrored parallel evolutionary universe going backwards Astrofísica (LaGEA), Universidade Federal in the cosmological thermal time negative sector. A quantum formulation based on do PAMPA (UNIPAMPA), Caçapava do the WDW equation is sketched and preliminary conclusions are drawn.
    [Show full text]
  • A Physico-Chemical Approach to Understanding Cosmic Evolution: Thermodynamics of Expansion and Composition of the Universe
    A Physico-Chemical Approach To Understanding Cosmic Evolution: Thermodynamics Of Expansion And Composition Of The Universe Carlos A. Melendres ( [email protected] ) The SHD Institute Research Article Keywords: Physical and Astrochemistry, composition and expansion of the universe, thermodynamics, phase diagram, Quantum Space, spaceons, dark energy, dark matter, cosmological constant, cosmic uid, Quintessence Posted Date: March 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-306782/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License A PHYSICO-CHEMICAL APPROACH TO UNDERSTANDING COSMIC EVOLUTION: THERMODYNAMICS OF EXPANSION AND COMPOSITION OF THE UNIVERSE Carlos A. Melendres The SHD Institute 216 F Street, Davis, CA 95616, U.S.A. Email: [email protected] February 2021 (Prepared for: SCIENTIFIC REPORTS) Keywords: Physical and Astrochemistry, composition and expansion of the universe, thermodynamics, phase diagram, Quantum Space, spaceons, dark energy, dark matter, cosmological constant, cosmic fluid, Quintessence 1 A PHYSICO-CHEMICAL APPROACH TO UNDERSTANDING COSMIC EVOLUTION: THERMODYNAMICS OF EXPANSION AND COMPOSITION OF THE UNIVERSE Carlos A. Melendres [email protected] ABSTRACT We present a physico-chemical approach towards understanding the mysteries associated with the Inflationary Big Bang model of Cosmic evolution, based on a theory that space consists of energy quanta. We use thermodynamics to elucidate the expansion of the universe, its composition, and the nature of dark energy and dark matter. The universe started from an atomic size volume of space quanta at very high temperature. Upon expansion and cooling, phase transitions resulted in the formation of fundamental particles, and matter which grow into stars, galaxies, and clusters due to gravity.
    [Show full text]
  • Explanation of Time Travel Using Big Bounce
    Explanation of time travel using big bounce Sarvesh Gharat, Btech Entc, VIIT Pune Email:- sarvesh. [email protected] Abstract:-We are going to see a short description on what exactly big bounce theory is and also we know that as per most of the theories, we know that time is nothing but just a 4th dimension.So there are many questions and paradoxes which occur if we talk about a thing called time travel. But today we are going to provide a solution for twin paradox and also are going to see, whether we can move into past, if yes then in which condition we will move into past i.e any year and in which condition we will move into past with respect to time moving in future i.e past wrt normal frame of reference but limited to the year in which we started traveling. Keywords:- Time dilation, M theory , universe, big bounce , expansion of universe , dimension, time Introduction:-There are many theories regarding formation of our universe, but one of the most accepted theory till now is the big bounce theory which says that our universe is expanding for now and will contract after some billion of years. We also know that as per M theory there are 11 dimensions out of which time is the 4th dimension. So in this paper we are going to explain how does time dilation works with the help of expansion of our universe and also what will happen to time when universe will start to contradict as mentioned in later part of big bounce theory Big bounce theory:- We all are aware of the big bounce theory which is been applied to our universe.
    [Show full text]
  • The Simplest Origin of the Big Bounce and Inflation
    International Journal of Modern Physics D Vol. 27, No. 14 (2018) 1847020 c World Scientific Publishing Company THE SIMPLEST ORIGIN OF THE BIG BOUNCE AND INFLATION Nikodem Pop lawski Department of Mathematics and Physics, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA∗ Torsion is a geometrical object, required by quantum mechanics in curved spacetime, which may naturally solve fundamental problems of general theory of relativity and cosmology. The black- hole cosmology, resulting from torsion, could be a scenario uniting the ideas of the big bounce and inflation, which were the subject of a recent debate of renowned cosmologists. Keywords: Spin, torsion, Einstein{Cartan theory, big bounce, inflation, black hole. I have recently read an interesting article, Pop Goes the Universe, in the January 2017 edition of Scientific American, written by Anna Ijjas, Paul Steinhardt, and Abraham Loeb (ISL) [1]. This article follows an article by the same authors, Inflationary paradigm in trouble after Planck 2013 [2]. They state that cosmologists should reassess their favored inflation paradigm because it has become nonempirical science, and consider new ideas about how the Universe began, namely, the big bounce. Their statements caused a group of 33 renowned physicists, including 4 Nobel Prize in Physics laureates, to write a reply, A Cosmic Controversy, categorically disagreeing with ISL about the testability of inflation and defending the success of inflationary models [3]. I agree with the ISL critique of the inflation paradigm, but I also agree with these 33 physicists that some models of inflation are testable. As a solution to this dispute, I propose a scenario, in which every black hole creates a new universe on the other side of its event horizon.
    [Show full text]
  • Cyclic Cosmology, Conformal Symmetry and the Metastability of the Higgs ∗ Itzhak Bars A, Paul J
    Physics Letters B 726 (2013) 50–55 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Cyclic cosmology, conformal symmetry and the metastability of the Higgs ∗ Itzhak Bars a, Paul J. Steinhardt b,c, , Neil Turok d a Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA b California Institute of Technology, Pasadena, CA 91125, USA c Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544, USA d Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada article info abstract Article history: Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a Received 31 July 2013 modest barrier (height (1010–12 GeV)4) separating it from a ground state with negative vacuum density Received in revised form 23 August 2013 of order the Planck scale. We note that metastability is problematic for standard bang cosmology but Accepted 26 August 2013 is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, Available online 2 September 2013 motivated by the approximate scaling symmetry of the standard model of particle physics and the Editor: M. Cveticˇ primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle.
    [Show full text]
  • A Classical, Non-Singular, Bouncing Universe
    Prepared for submission to JCAP A classical, non-singular, bouncing universe Özenç Güngör,a and Glenn D. Starkmana aISO/CERCA/Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079 E-mail: [email protected], [email protected] Abstract. We present a model for a classical, non-singular bouncing cosmology without violation of the null energy condition (NEC). The field content is General Relativity plus a real scalar field with a canonical kinetic term and only renormalizable, polynomial-type self-interactions for the scalar field in the Jordan frame. The universe begins vacuum-energy dominated and is contracting at t = −∞. We consider a closed universe with a positive spatial curvature, which is responsible for the universe bouncing without any NEC violation. An Rφ2 coupling between the Ricci scalar and the scalar field drives the scalar field from arXiv:2011.05133v2 [gr-qc] 12 Jan 2021 the initial false vacuum to the true vacuum during the bounce. The model is sub-Planckian throughout its evolution and every dimensionful parameter is below the effective-field-theory scale MP , so we expect no ghost-type or tachyonic instabilities. This model solves the horizon problem and extends co-moving particle geodesics to past infinity, resulting in a geodesically complete universe without singularities. We solve the Friedman equations and the scalar-field equation of motion numerically, and analytically under certain approximations. Keywords: cosmic singularity, alternatives to inflation, physics of the early universe, initial conditions and eternal universe 1 Introduction The Inflationary Big-Bang model, our standard model of cosmology, has had notable and numerous observational successes over the last several decades.
    [Show full text]
  • QUALIFIER EXAM SOLUTIONS 1. Cosmology (Early Universe, CMB, Large-Scale Structure)
    Draft version June 20, 2012 Preprint typeset using LATEX style emulateapj v. 5/2/11 QUALIFIER EXAM SOLUTIONS Chenchong Zhu (Dated: June 20, 2012) Contents 1. Cosmology (Early Universe, CMB, Large-Scale Structure) 7 1.1. A Very Brief Primer on Cosmology 7 1.1.1. The FLRW Universe 7 1.1.2. The Fluid and Acceleration Equations 7 1.1.3. Equations of State 8 1.1.4. History of Expansion 8 1.1.5. Distance and Size Measurements 8 1.2. Question 1 9 1.2.1. Couldn't photons have decoupled from baryons before recombination? 10 1.2.2. What is the last scattering surface? 11 1.3. Question 2 11 1.4. Question 3 12 1.4.1. How do baryon and photon density perturbations grow? 13 1.4.2. How does an individual density perturbation grow? 14 1.4.3. What is violent relaxation? 14 1.4.4. What are top-down and bottom-up growth? 15 1.4.5. How can the power spectrum be observed? 15 1.4.6. How can the power spectrum constrain cosmological parameters? 15 1.4.7. How can we determine the dark matter mass function from perturbation analysis? 15 1.5. Question 4 16 1.5.1. What is Olbers's Paradox? 16 1.5.2. Are there Big Bang-less cosmologies? 16 1.6. Question 5 16 1.7. Question 6 17 1.7.1. How can we possibly see galaxies that are moving away from us at superluminal speeds? 18 1.7.2. Why can't we explain the Hubble flow through the physical motion of galaxies through space? 19 1.7.3.
    [Show full text]
  • The Ways in Which Universe Will End
    Volume 6, Issue 7, July – 2021 International Journal of Innovative Science and Research Technology ISSN No:-2456-2165 Fate of Universe: The Ways in Which Universe will End Akshay Kaushal Abstract:- Accounts of creation and the end of the Infinitely a reduction of entropy by the Poincaré recurrence universe have always been complex and controversial. theorem, thermal fluctuations, and the fluctuation theorem There have always been varying theories from the will be witnessed. biblical, archaeological, and scientific among other points of view. The cosmology point of view is one of the Related to the Big Freeze is the Heat Death as an common and main accounts used as an explanation for explanation of how the universe might die. both the creation and the future of the universe. From a scientific point of view, cosmology makes the description The Heat Death scenario maintains that the universe and evaluation of possible scenarios of the creation, enters a state of maximum entropy whereby there is even evolution, and final state of the universe, without the distribution of everything and there are no gradients, yet untestable limitations of myths and theological basis. these gradients are required for sustaining information processing, such as life (Kragh, 23). While the Heat Death Keywords:- Universe, Big Bang, Big Rip, Hubble Constant. scenario agrees with the basis outlined in three spatial models, there is a need for the universe to eventually attain I. INTRODUCTION the minimum temperature required for its occurrence. Modern cosmology is dominated by key theories such 2. Big Rip as the Big Bang theory, weaving in key astronomy and The big rip theory is authored by Robert R.
    [Show full text]