Isolation, Structural Assessments and Activity on Voltage-Gated Ion

Total Page:16

File Type:pdf, Size:1020Kb

Isolation, Structural Assessments and Activity on Voltage-Gated Ion University of Southern Denmark GiTx1(β/κ-theraphotoxin-Gi1a), a novel toxin from the venom of Brazilian tarantula Grammostola iheringi (Mygalomorphae, Theraphosidae) Isolation, structural assessments and activity on voltage-gated ion channels Montandon, Gabriela Gontijo; Cassoli, Juliana Silva; Peigneur, Steve; Braga, Thiago Verano; Moreira Dos Santos, Daniel; Bittencourt Paiva, Ana Luiza; Ricardo de Moraes, Éder; Kushmerick, Christopher; Borges, Márcia Helena; Richardson, Michael; Monteiro de Castro Pimenta, Adriano; Kjeldsen, Frank; Vasconcelos Diniz, Marcelo Ribeiro; Tytgat, Jan; Elena de Lima, Maria Published in: Biochimie DOI: 10.1016/j.biochi.2020.07.008 Publication date: 2020 Document version: Accepted manuscript Document license: CC BY-NC-ND Citation for pulished version (APA): Montandon, G. G., Cassoli, J. S., Peigneur, S., Braga, T. V., Moreira Dos Santos, D., Bittencourt Paiva, A. L., Ricardo de Moraes, É., Kushmerick, C., Borges, M. H., Richardson, M., Monteiro de Castro Pimenta, A., Kjeldsen, F., Vasconcelos Diniz, M. R., Tytgat, J., & Elena de Lima, M. (2020). GiTx1(β/κ-theraphotoxin-Gi1a), a novel toxin from the venom of Brazilian tarantula Grammostola iheringi (Mygalomorphae, Theraphosidae): Isolation, structural assessments and activity on voltage-gated ion channels. Biochimie, 176, 138-149. https://doi.org/10.1016/j.biochi.2020.07.008 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 05. Oct. 2021 1 GiTx1(β/κ-theraphotoxin-Gi1a), a novel toxin from the venom of Brazilian 2 tarantula Grammostola iheringi (Mygalomorphae, Theraphosidae): 3 isolation, structural assessments and activity on voltage-gated ion channels 4 5 Gabriela Gontijo Montandona; Juliana Silva Cassolia,b; Steve Peigneurb; Thiago Verano 6 Bragac,d; Daniel Moreira dos Santosa; Ana Luiza Bittencourt Paivaf; Éder Ricardo de 7 Moraesc; Christopher Kuschmerickc; Márcia Helena Borgesf; Michael Richardsonf; Adriano 8 Monteiro de Castro Pimentaa; Frank Kjeldsend; Marcelo Ribeiro Vasconcelos Dinizf; Jan 9 Tytgatb; Maria Elena de Limaa,h* 10 11 Affiliations 12 13 aDepartamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais - UFMG, 14 Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil. 15 16 bPharmacology and Toxicology, University of Leuven (KULeuven) - Campus Gasthuisberg, 17 PO Box 922, Herestraat 49, 3000 Leuven, Belgium. 18 19 cDepartamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais - UFMG, Av. 20 Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil. 21 22 dProtein Research Group, Department of Biochemistry and Molecular Biology, University of 23 Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. 24 25 fDiretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira 26 Carneiro 80, 30510-010 Belo Horizonte, MG, Brazil. 27 28 hSanta Casa de Belo Horizonte: Ensino e Pesquisa, Rua Domingos Vieira, 590, 30.150-240 29 Belo Horizonte, MG, Brazil. 30 31 32 * Corresponding author: Maria Elena de Lima - Santa Casa de Belo Horizonte: Ensino e 33 Pesquisa, Rua Domingos Vieira, 590, 30.150-240 Belo Horizonte, MG, Brazil. 34 E-mail: [email protected]; [email protected] (M.E. de Lima). 35 36 Keywords 37 Grammostola, tarantula venom, GiTx1, β/κ-TRTX-Gi1a, spider toxin 38 39 40 41 42 43 44 1 45 Abstract 46 Spider venoms, despite of their toxicity, represent rich sources of active compounds with 47 biotechnological potential. However, in view of the diversity of the spider species, the full 48 potential of their venom molecules is still far from being known. In this work, we report the 49 purification, the structural and functional characterization of GiTx1 (β/κ-TRTX-Gi1a), the first 50 toxin purified from the venom of the Brazilian tarantula spider Grammostola iheringi. This 51 toxin was isolated by chromatographic procedures, completely sequenced through automated 52 Edman’s degradation and tandem mass spectrometry and its spatial structure was predicted by 53 molecular modeling. It has a MW of 3.585 Da and the following sequence of amino acids: 54 SCQKWMWTCDQRPCCEDMVCKLWCKIIK. The pharmacological activities of GiTx1 55 were characterized by electrophysiology using two different approaches: (i) whole-cell patch 56 clamp on dorsal root ganglia neurons (DRG) and (ii) two-electrode voltage-clamp on voltage- 57 gated sodium and potassium channels subtypes expressed in Xenopus laevis oocytes. GiTx1, 58 at 2 μM, caused a partial block of inward ( 40 %) and outward ( 20 %) currents in DRG 59 cells, blocked rNav1.2, rNav1.4 and mNav1.6 and had a noticeable effect on VdNav, an arachnid 60 sodium channel isoform, among others. IC50 values of 156.39 ± 14.90 nM for Nav1.6 and 61 124.05 ± 12.99 nM for VdNav, were obtained. In addition, this toxin was active on rKv4.3 and 62 hERG isoforms. However, it was not effective on Shaker IR and rKv2.1 potassium channel 63 subtypes. These multiple effects on ion channels characterize GiTx1 as a promiscuous toxin. 64 65 66 67 68 69 70 71 2 72 1. Introduction 73 Spider venoms are complex mixtures of hundreds of compounds that act on different 74 targets when introduced into other organisms due to predatory or defense senses [1]. The 75 chemical nature of these molecules is very diverse, including salts, nucleotides, free amino 76 acids, glucose, neurotransmitters, acylpolyamines, and mainly peptide toxins and proteins 77 [2,3]. Because of the diverse mixture of components, spider venoms venom represent an 78 important source of novel biologically active compounds potentially useful as tools for 79 pharmacological and agricultural researches – e.g. development of drugs and insecticides (for 80 review see: [4,5]). 81 Spiders from the Theraphosidae family (infraorder Mygalomorphae), also called 82 tarantulas and “caranguejeiras”, are a sizable group of large, hairy and diverse spiders species, 83 distribute nearly all over globe. Example are species belonging the genus Theraphosa, 84 Lasiodora and Grammostola, the last mainly found in the Southern region of Brazil, Argentina, 85 Chile, Paraguay Bolivia and Uruguay. 86 Tarantula toxins comprise a group of peptides with 31 - 41 amino acids residues and 3 87 - 4 disulfide bridges, displaying DDH or ICK structural motifs [3,6,7]. Several studies have 88 demonstrated the wide molecular repertoire of toxins from tarantula venoms [3,8–12]. To date, 89 information on 450 toxins from the Theraphosidae family have been deposited in the 90 Arachnoserver database [13], however, few of these toxins have been functionally 91 characterized. 92 The spider Grammostola iheringi is one of best-known spider species from the 93 Theraphosidae family in Brazil. With a broad characterization approach based on 94 Multidimensional Protein Identification Technology (MudPIT) and bioinformatic analysis 95 using PepExplorer tool, our group has identified more than three hundred proteins in the venom 96 of Grammostola iheringi [14]. Through alignments searches in databases, we were able to 97 identify about 30% of these sequences, which include proteins (metalloproteinases, cysteine 3 98 proteinases, aspartic proteinases, carboxypeptidases and cysteine-rich secretory enzymes – 99 CRISP) and toxins. We have found in the G. iheringi venomous extract 63 toxins with 20-86 100 amino acid residues (MW 2-10 kDa) and 6-12 cysteines. Through sequence homology, it was 101 possible to infer functional activity for some of these toxins, including analgesic, 102 antiarrhythmic and insecticidal activity, likely through modulation of ion channels since 103 tarantula’s toxins have been described mainly as ion channel modulators. However, several 104 neurotoxins are yet to be characterized, such as the 24 neurotoxins in the venom of G. iheringi 105 identified by Borges et al, 2016, with remaining unknown targets. 106 In this work, a new short ICK toxin from G. iheringi venom, GiTx1 (β/κ-TRTX-Gi1a), 107 was purified and structurally characterized. Furthermore, its actions on voltage-gated sodium 108 and potassium channels were characterized using whole-cell patch clamp and two electrode 109 voltage-clamp techniques. GiTx1 is the first toxin purified from the venom of G. iheringi and 110 its structural and pharmacological characterization provide a relevant contribution on the 111 venom study of this spider. 112 2. Material and Methods 113 2.1. Animal collection and Venom Extraction 114 Specimens of Grammostola iheringi (Sisgen #A9BCC40) were collected at the border 115 of Santa Catarina and Rio Grande do Sul states (Coordinates: 27°31'31"S, 51°47'7" W), in the 116 south region of Brazil. The species were identified by Dr. Sylvia Lucas from the Arthropod 117 Laboratory of Butantan Institute (Brazil). The venom was obtained from eighteen adult 118 individuals by electrical stimulation (5V) of the chelicerae. Soluble venom was pooled, 119 lyophilized and stored at -20 oC until use.
Recommended publications
  • Prospecção De Peptídeos Neuroativos Da Peçonha Da Aranha Caranguejeira Acanthoscurria Paulensis
    UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS Programa de Pós-Graduação em Biologia Animal Laboratório de Toxinologia CAROLINE BARBOSA FARIAS MOURÃO Prospecção de peptídeos neuroativos da peçonha da aranha caranguejeira Acanthoscurria paulensis Brasília 2012 CAROLINE BARBOSA FARIAS MOURÃO Prospecção de peptídeos neuroativos da peçonha da aranha caranguejeira Acanthoscurria paulensis Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal do Instituto de Ciências Biológicas da Universidade de Brasília como requisito parcial à obtenção do título de Mestre. Orientadora: Dra. Elisabeth Ferroni Schwartz Brasília 2012 À minha mãe, Jaqueline Barbosa, pelo apoio incondicional. À minha família, meu exemplo e suporte. Ao Lucas Caridade, por todo o carinho. À Dra. Elisabeth Schwartz, que proporcionou a realização deste projeto. À Toxinologia, que por envolver áreas tão diversas e complementares, nos permite enjoar temporariamente de uma enquanto nos divertimos com outra. Agradecimentos Primeiramente à minha querida mãe, pelo amor, suporte, incentivo e por ter sempre apoiado minhas escolhas acadêmicas. A toda minha família, pelo exemplo de união, suporte e por estarem sempre presentes. Ao meu primo Pedro Henrique pela ajuda em campo. Ao Lucas Caridade, pelo amor, companheirismo e motivação. Obrigada por fazer tudo parecer mais simples e por ser tão paciente. À Dra. Elisabeth Schwartz, pela orientação, incentivo, sugestões, e pela confiança depositada em mim. Obrigada pela oportunidade. Ao Dr. Carlos Bloch Jr., do Laboratório de Espectrometria de Massas – EMBRAPA Recursos Genéticos e Biotecnologia, por permitir acesso ao laboratório e pelos ensinamentos e sugestões ao longo desses anos. Ao Eder Barbosa, pela amizade e por me auxiliar em todos os sequenciamentos de novo realizados neste trabalho.
    [Show full text]
  • The Andean Tarantulas Euathlus Ausserer, 1875, Paraphysa Simon
    This article was downloaded by: [Fernando Pérez-Miles] On: 05 May 2014, At: 07:07 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnah20 The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions Carlos Perafána & Fernando Pérez-Milesa a Universidad de La República, Facultad de Ciencias, Sección Entomología, Iguá 4225, Montevideo, Uruguay Published online: 01 May 2014. To cite this article: Carlos Perafán & Fernando Pérez-Miles (2014): The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions, Journal of Natural History, DOI: 10.1080/00222933.2014.902142 To link to this article: http://dx.doi.org/10.1080/00222933.2014.902142 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • Animal Venom Components: New Approaches for Pain Treatment
    Approaches in Poultry, Dairy & Veterinary Sciences ApproachesAppro Poult Dairy in Poultry,& Vet Sci Dairy & CRIMSON PUBLISHERS C Wings to the Research Veterinary Sciences ISSN: 2576-9162 Mini Review Animal Venom Components: New Approaches for Pain Treatment Ana Cristina N Freitas and Maria Elena de Lima* Departamento de Bioquímica e Imunologia, Brazil *Corresponding author: Maria E de Lima, Departamento de Bioquímica e Imunologia, Belo Horizonte, Minas Gerais, Brazil Submission: September 09, 2017; Published: November 06, 2017 Abbreviations: NSAID: Non-Steroidal Anti-Inflammatory Drugs; FDA: Food and Drug Administration; nAChRs: Nicotinic Acetylcholine Receptors; ASICs: Acid-Sensing Ion Channel Introduction This comment has the aim to be illustrative, highlighting some At the moment, there are a great number of animal toxins examples of venoms that have shown a great potential as analgesics. that are being studied for treatment or research of many different It is not our goal to write a review of this subject, considering it is disorders, including pain. The components isolated from animal not pertinent in a brief text like this. venoms gained this interest because of their usual high potency and selectivity in which they act on their molecular targets, such Nowadays there is a lot of concern and discussion about animal as ion channels or receptors [3]. Currently, a large number of welfare, since the role that animals play in human life is far beyond pharmaceutical companies are interested in the development of of being just our pets. Animals are very important as source of drugs based on toxins. One of the most successful cases, regarding pain treatment, was the development of Ziconotide (PRIALT).
    [Show full text]
  • Versatile Spider Venom Peptides and Their Medical and Agricultural Applications
    Accepted Manuscript Versatile spider venom peptides and their medical and agricultural applications Natalie J. Saez, Volker Herzig PII: S0041-0101(18)31019-5 DOI: https://doi.org/10.1016/j.toxicon.2018.11.298 Reference: TOXCON 6024 To appear in: Toxicon Received Date: 2 May 2018 Revised Date: 12 November 2018 Accepted Date: 14 November 2018 Please cite this article as: Saez, N.J., Herzig, V., Versatile spider venom peptides and their medical and agricultural applications, Toxicon (2019), doi: https://doi.org/10.1016/j.toxicon.2018.11.298. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Versatile spider venom peptides and their medical and agricultural applications 2 3 Natalie J. Saez 1, #, *, Volker Herzig 1, #, * 4 5 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia 6 7 # joint first author 8 9 *Address correspondence to: 10 Dr Natalie Saez, Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 11 4072, Australia; Phone: +61 7 3346 2011, Fax: +61 7 3346 2101, Email: [email protected] 12 Dr Volker Herzig, Institute for Molecular Bioscience, The University of Queensland, St.
    [Show full text]
  • FERNANDO HITOMI MATSUBARA.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Biológicas Departamento de Biologia Celular FERNANDO HITOMI MATSUBARA CLONAGEM E EXPRESSÃO HETERÓLOGA DE UM PEPTÍDEO DA FAMÍLIA DAS NOTINAS PRESENTE NO VENENO DA ARANHA MARROM (Loxosceles intermedia) CURITIBA 2011 FERNANDO HITOMI MATSUBARA CLONAGEM E EXPRESSÃO HETERÓLOGA DE UM PEPTÍDEO DA FAMÍLIA DAS NOTINAS PRESENTE NO VENENO DA ARANHA MARROM (Loxosceles intermedia) Dissertação apresentada ao Programa de Pós- Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, como parte das exigências para a obtenção do título de Mestre em Biologia Celular e Molecular Orientador: Prof. Dr. Silvio Sanches Veiga a a Co-orientadora: Prof . Dr . Olga Meiri Chaim CURITIBA 2011 Aos meus pais pela oportunidade que me concederam de poder me dedicar integralmente aos estudos. Pelo apoio incondicional e generosidade constante. Muito Obrigado! AGRADECIMENTOS Ao meu orientador, Prof. Dr. Silvio Sanches Veiga, por todos os ensinamentos, incentivos e confiança nesses 2 anos. Por proporcionar a oportunidade de me integrar ao Laboratório de Matriz Extracelular e Biotecnologia de Venenos e conviver com um grupo especial de pessoas. À minha co-orientadora, Profa Dra Olga Meiri Chaim, por ser um exemplo de competência e dedicação. Por ser generosa e, sobretudo, humana, aconselhando e motivando a todo instante. Muito obrigado! À Luiza Helena Gremski, pela prontidão em me ajudar em todos os experimentos. Por ser um exemplo de profissionalismo e disciplina. Muito obrigado por toda a paciência e disposição! À Profa. Dra. Andréa Senff Ribeiro, por todos os conselhos acadêmicos e pessoais. Pelos incentivos e momentos descontraídos! À Dilza Trevisan Silva, por todo o auxílio técnico e pela grande amizade! Por tornar todos os momentos divertidos e leves! Pelo companheirismo em absolutamente todas as horas! À Valéria Pereira Ferrer, por todo o auxílio técnico e pela grande amizade! Por ser exemplo de conduta ética e pela paciência.
    [Show full text]
  • Molecular Simulations of Disulfide-Rich Venom Peptides With
    molecules Review Review Molecular SimulationsSimulations ofof Disulfide-RichDisulfide-Rich VenomVenom Peptides withwith IonIon ChannelsChannels andand MembranesMembranes Evelyne Deplazes 1,2 Evelyne Deplazes 1,2 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, WA 6102, Australia; [email protected] Perth, WA 6102, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia QLD 4072, Australia Academic Editor: Roberta Galeazzi Academic Editor: Roberta Galeazzi Received: 8 February 2017; Accepted: 24 February 2017; Published: date Received: 8 February 2017; Accepted: 24 February 2017; Published: 27 February 2017 Abstract:Abstract: Disulfide-richDisulfide-rich peptides isolated isolated from from the the venom venom of of arthropods arthropods and and marine marine animals animals are are a arich rich source source of of potent potent and and selective selective modulators modulators of of ion ion channels. channels. This This makes these peptides valuable leadlead moleculesmolecules forfor thethe developmentdevelopment ofof newnew drugsdrugs toto treattreat neurologicalneurological disorders.disorders. Consequently,Consequently, much effort goes into understanding understanding their their mechanis mechanismm
    [Show full text]
  • Microprotein Hit Finding Library Uncovers Bee Venom PLA2 Inhibited by Spider Venom Emily Knight1,2 and Steven Trim1 1) Venomtech Limited, Sandwich, UK
    Microprotein Hit Finding Library Uncovers Bee Venom PLA2 Inhibited by Spider Venom Emily Knight1,2 and Steven Trim1 1) Venomtech Limited, Sandwich, UK. 2) Canterbury Christ Church University, Canterbury, UK. Introduction Phospholipase A2 (PLA2) enzymes are a large and diverse family of enzymes which are involved in the metabolism of potent inflammation mediators such as prostaglandins, leukotrienes and platelet activating factor (Huang et al., 1999). PLA2 enzymes have a role in inflammatory conditions such as atherosclerosis and rheumatoid arthritis. PLA2 inhibition is therefore considered an attractive target for therapeutic application in such inflammatory conditions. Toxic forms of PLA2 enzymes are present in many venoms, particularly those of Hymenoptera (Bees, Wasps and Ants). More recently, PLA2 enzymes have been discovered for the first time in venom of Theraphosidae (tarantula spiders) (Ferreira et al., 2016). PLA2 inhibitors have been documented in snake serum, presumably as protection against accidental envenomation (Dunn & Broady, 2001), but no such inhibitors have been discovered thus far in spiders. We therefore set out to investigate the potential presence of novel PLA2 inhibitors in theraphosid venom using the Targeted-Venom Discovery Array™ hit finding strategy. Venom libraries contain a diversity of pharmacological actives, including microproteins and peptides, which deliver hits on nearly all targets, especially those difficult to hit with small molecule libraries. Materials and Methods Venoms were selected to provide a wide coverage of genera of Theraphosidae (commonly known as tarantulas). EnzChek® Phospholipase A2 Assay Kit (Molecular Probes®, Invitrogen) was used to study PLA2 activity. The assays were performed in 384 well format using a reaction volume of 25 μl per well.
    [Show full text]
  • Morphology, Evolution and Usage of Urticating Setae by Tarantulas (Araneae: Theraphosidae)
    ZOOLOGIA 30 (4): 403–418, August, 2013 http://dx.doi.org/10.1590/S1984-46702013000400006 Morphology, evolution and usage of urticating setae by tarantulas (Araneae: Theraphosidae) Rogério Bertani1,3 & José Paulo Leite Guadanucci2 1 Laboratório Especial de Ecologia e Evolução, Instituto Butantan. Avenida Vital Brazil 1500, 05503-900 São Paulo SP, Brazil. E-mail: [email protected] 2 Laboratório de Zoologia de Invertebrados, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK. Rodovia MGT 367, km 583, 39100-000 Diamantina, MG, Brazil. E-mail: [email protected] 3 Corresponding author. ABSTRACT. Urticating setae are exclusive to New World tarantulas and are found in approximately 90% of the New World species. Six morphological types have been proposed and, in several species, two morphological types can be found in the same individual. In the past few years, there has been growing concern to learn more about urticating setae, but many questions still remain unanswered. After studying individuals from several theraphosid species, we endeavored to find more about the segregation of the different types of setae into different abdominal regions, and the possible existence of patterns; the morphological variability of urticating setae types and their limits; whether there is variability in the length of urticating setae across the abdominal area; and whether spiders use different types of urticat- ing setae differently. We found that the two types of urticating setae, which can be found together in most theraphosine species, are segregated into distinct areas on the spider’s abdomen: type III occurs on the median and posterior areas with either type I or IV surrounding the patch of type III setae.
    [Show full text]
  • Conus Venom Peptide Pharmacology
    1521-0081/12/6402-259–298$25.00 PHARMACOLOGICAL REVIEWS Vol. 64, No. 2 Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics 5322/3751766 Pharmacol Rev 64:259–298, 2012 ASSOCIATE EDITOR: ANNETTE C. DOLPHIN Conus Venom Peptide Pharmacology Richard J. Lewis, Se´bastien Dutertre, Irina Vetter, and MacDonald J. Christie Institute for Molecular Bioscience, the University of Queensland in St. Lucia, Brisbane, Queensland, Australia (R.J.L., S.D., I.V.); and Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia (M.J.C.) Abstract ................................................................................ 260 I. Introduction............................................................................. 260 II. ␻-Conotoxin inhibitors of voltage-gated calcium channels .................................... 263 A. Subtype selectivity ................................................................... 264 B. Structure-activity relationships ........................................................ 266 C. Calcium channel inhibition by conotoxins in pain management ........................... 267 II. Conotoxins interacting with voltage-gated sodium channels .................................. 269 Downloaded from A. ␮-Conotoxin inhibitors of voltage-gated sodium channels ................................. 271 B. ␮O-Conotoxin inhibitors of voltage-gated sodium channels................................ 272 C. Other conotoxin inhibitors of voltage-gated sodium channels.............................
    [Show full text]
  • Venomic, Transcriptomic, and Bioactivity Analyses of Pamphobeteus Verdolaga Venom Reveal Complex Disulfide-Rich Peptides That Modulate Calcium Channels
    toxins Article Venomic, Transcriptomic, and Bioactivity Analyses of Pamphobeteus verdolaga Venom Reveal Complex Disulfide-Rich Peptides That Modulate Calcium Channels Sebastian Estrada-Gomez 1,2,* , Fernanda Caldas Cardoso 3 , Leidy Johana Vargas-Muñoz 4 , 4 5, Juan Carlos Quintana-Castillo , Claudia Marcela Arenas Gómez y , Sandy Steffany Pineda 6,7,8 and Monica Maria Saldarriaga-Cordoba 9 1 Programa de Ofidismo/Escorpionismo—Serpentario, Universidad de Antioquia UdeA, Carrera 53 No 61–30, Medellín, Antioquia, CO 050010, Colombia 2 Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No 52–21, Medellín, Antioquia, CO 050010, Colombia 3 Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072, Australia 4 Facultad de Medicina, Universidad Cooperativa de Colombia, Calle 50 A No 41–20 Medellín, Antioquia, CO 050012, Colombia 5 Grupo de Génetica, Regeneración y Cáncer, Universidad de Antioquia UdeA, Carrera 53 No 61–30, Medellín, Antioquia, CO 050010, Colombia 6 Brain and Mind Centre, University of Sydney, Camperdown, NSW 2052, Australia 7 Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia 8 St. Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia 9 Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 7750000, Chile * Correspondence: [email protected]; Tel.: +57-(4)-219-2315; Fax: +57-(4)-263-1914 Current address: Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue y Engineering, Woods Hole, MA 02543, USA. Received: 23 June 2019; Accepted: 14 August 2019; Published: 27 August 2019 Abstract: Pamphobeteus verdolaga is a recently described Theraphosidae spider from the Andean region of Colombia.
    [Show full text]
  • Tetrodotoxin, a Potential Drug for Neuropathic and Cancer Pain Relief?
    toxins Review Tetrodotoxin, a Potential Drug for Neuropathic and Cancer Pain Relief? Rafael González-Cano 1,2, M. Carmen Ruiz-Cantero 1,2, Miriam Santos-Caballero 1,2, Carlos Gómez-Navas 1, Miguel Á. Tejada 3 and Francisco R. Nieto 1,2,* 1 Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, 18016 Granada, Spain; [email protected] (R.G.-C.); [email protected] (M.C.R.-C.); [email protected] (M.S.-C.); [email protected] (C.G.-N.) 2 Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain 3 INCLIVA Health Research Institute, 46010 Valencia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-958-242-056 Abstract: Tetrodotoxin (TTX) is a potent neurotoxin found mainly in puffer fish and other marine and terrestrial animals. TTX blocks voltage-gated sodium channels (VGSCs) which are typically classified as TTX-sensitive or TTX-resistant channels. VGSCs play a key role in pain signaling and some TTX-sensitive VGSCs are highly expressed by adult primary sensory neurons. During pathological pain conditions, such as neuropathic pain, upregulation of some TTX-sensitive VGSCs, including the massive re-expression of the embryonic VGSC subtype NaV1.3 in adult primary sensory neurons, contribute to painful hypersensitization. In addition, people with loss-of-function mutations in the VGSC subtype NaV1.7 present congenital insensitive to pain. TTX displays a prominent analgesic effect in several models of neuropathic pain in rodents. According to this promising preclinical evidence, TTX is currently under clinical development for chemo-therapy-induced neuropathic pain and cancer-related pain.
    [Show full text]
  • Venom‑Derived Peptide Modulators of Cation‑Selective Channels : Friend, Foe Or Frenemy
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Venom‑derived peptide modulators of cation‑selective channels : friend, foe or frenemy Bajaj, Saumya; Han, Jingyao 2019 Bajaj, S., & Han, J. (2019). Venom‑Derived Peptide Modulators of Cation‑Selective Channels: Friend, Foe or Frenemy. Frontiers in Pharmacology, 10, 58‑. doi:10.3389/fphar.2019.00058 https://hdl.handle.net/10356/88522 https://doi.org/10.3389/fphar.2019.00058 © 2019 Bajaj and Han. This is an open‑access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded on 30 Sep 2021 04:20:36 SGT fphar-10-00058 February 23, 2019 Time: 18:29 # 1 MINI REVIEW published: 26 February 2019 doi: 10.3389/fphar.2019.00058 Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy Saumya Bajaj*† and Jingyao Han† Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels.
    [Show full text]