Purificação E Caracterização Da Fração Neurotóxica Da Peçonha Da Anêmona Do Mar Anthopleura Cascaia

Total Page:16

File Type:pdf, Size:1020Kb

Purificação E Caracterização Da Fração Neurotóxica Da Peçonha Da Anêmona Do Mar Anthopleura Cascaia Bruno Madio Purificação e caracterização da fração neurotóxica da peçonha da anêmona do mar Anthopleura cascaia Purification and characterization of the neurotoxic fraction from the venom of the sea anemone Anthopleura cascaia São Paulo 2012 Bruno Madio Versão corrigida conforme a Resolução CoPGr: 5890 Original encontra-se disponível no Instituto de Biociências da Universidade de São Paulo Purificação e caracterização da fração neurotóxica da peçonha da anêmona do mar Anthopleura cascaia Purification and characterization of the neurotoxic fraction from the venom of the sea anemone Anthopleura cascaia Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção do Título de Mestre em Ciências, na Área de Fisiologia Geral. Orientador: José Eduardo Pereira Wilken Bicudo São Paulo 2012 Bruno Madio Madio, Bruno Purificação e caracterização da fração neurotóxica da peçonha da anêmona do mar Anthopleura cascaia. 169 páginas. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Fisiologia Geral. 1. Toxinologia 2. Neurotoxinas 3. Anêmonas do mar. Universidade de São Paulo. Instituto de Biociências. Departamento de Fisiologia. Comissão Julgadora: Prof. Dr. José Eduardo Pereira Wilken Bicudo Prof.(a) Dr. (a) Prof.(a) Dr. (a) “...se alguém pensa que sabe alguma coisa, não a conhece ainda como convém conhecer...” I Corinthios 8:2 Por ter a certeza de que ciência não é construída de forma solitária e por ter obtido os resultados da minha dissertação por meio de favores e colaborações. Por esses e outros motivos gostaria de agradecer: Primeiramente a minha família, que sempre me amaram e me apoiaram incondicionalmente. Mesmo distantes do meu trabalho, em outras palavras, sem entender nada sempre me apoiaram e confiaram nas minhas metas. Ao Prof. José Carlos de Freitas, inicialmente meu orientador, por ter aberto as portas de seu laboratório. Mesmo ausente, me incentivou pela excelência de seus trabalhos publicados. Ao meu atual orientador, Prof. José Eduardo Pereira Wilken Bicudo, muito obrigado por assumir a complicada obrigação de me orientar. Ao Diego Jose Orts y Belato obrigado por desde a graduação estar ao meu lado nessa batalha. Não vejo como seria possível enfrentar tudo o que passamos sozinho. Ao professor Dr. Jan Tytgat e ao Laboratório de Toxicologia por me receber tão bem em seu país e por dar suporte para conseguir realisar tantos experimentos em tão pouco tempo. Ao Álvaro Rossan de Brandão Prieto da Silva, mesmo sem “vínculo” institucional, sempre esteve disposto em me ajudar. Obrigado por ser uma referência para mim como cientista e pessoa. A todos os amigos do departamento de fisiologia, não preciso citar nomes, pois quem me apoiou, compartilhou discussões, cafés, festas, almoços, etc. sabe que sou grato e terei muitos como amigos pelo resto da vida. Aos funcionários do Instituto de Biociências e do Departamento de Fisiologia Geral, muito obrigado por darem suporte para poder desenvolver meu trabalho. Ao CNPq e ao Instituto de Biociências da USP, obrigado pelo apoio financeiro. Agradeço a todos aqueles que de forma direta e indireta contribuíram para realização deste trabalho. Muito Obrigado! Índice Lista de Figuras ............................................................................................................................ I Lista de Tabelas........................................................................................................................... X Lista de Símbolos e Abreviaturas ............................................................................................ XI Lista de abreviaturas ............................................................................................................... XII Lista de símbolos ................................................................................................................... XIII Lista de abreviatura dos aminoácidos ................................................................................... XIV 1. Introdução ............................................................................................................................ 1 1.1 Anêmonas do mar – aspectos zoológicos .................................................................... 2 1.1.1 Cnidocitos .............................................................................................................. 4 1.2 Peçonha de anêmonas do mar ..................................................................................... 6 1.3 Neurotoxinas de anêmonas do mar .............................................................................. 7 1.4 Toxinas de anêmonas do mar e canais para potássio sensíveis à voltagem ............... 8 1.4.1 Toxinas de canal de potássio do tipo 1. ................................................................ 8 1.4.2 Toxinas de canal se potássio do tipo 2. ................................................................ 8 1.4.3 Toxinas de canal se potássio do tipo 3. ................................................................ 9 1.4.4 Toxinas de canal de potássio do tipo 4. ................................................................ 9 1.5 Canais para potássio dependentes de voltagem ........................................................ 10 1.5.1 Gating no segmento S6 ....................................................................................... 15 1.5.2 Inativação N-type (Gate “Ball-and-chain”) ........................................................... 18 1.5.3 Gating no filtro seletivo ........................................................................................ 18 1.5.4 Sensor de voltagem ............................................................................................. 20 1.5.5 Subfamílias de canais KV .................................................................................... 21 1.6 Toxinas de anêmonas do mar e canais para sódio sensíveis à voltagem.................. 26 1.6.1 Toxinas de canal de sódio tipo 1. ........................................................................ 27 1.6.2 Toxinas de canal de sódio tipo 2. ........................................................................ 29 1.6.3 Toxinas de canal de sódio tipo 3. ........................................................................ 30 1.6.4 Toxinas de canal de sódio tipo 4. ........................................................................ 30 1.6.5 Superfície bioativa de toxinas de anêmonas do mar que atuam em canal de sódio sensível à voltagem. .................................................................................................. 30 1.7 Canais para sódio sensíveis a voltagem ..................................................................... 33 1.7.1 Canais NaV de mamíferos ................................................................................... 37 1.7.2 Canais NaV de insetos versus mamíferos ........................................................... 40 1.8 Novas classes de toxinas de anêmonas do mar ......................................................... 43 1.9 Considerações finais ................................................................................................... 45 2. Objetivos ............................................................................................................................ 46 2.1 Objetivo geral .............................................................................................................. 47 2.2 Objetivos específios .................................................................................................... 47 3. Material e Métodos ............................................................................................................ 48 3.1 Reagentes ................................................................................................................... 49 3.2 Captura e manutenção das anêmonas do mar ........................................................... 49 3.3 Obtenção da peçonha de Anthopleura cascaia .......................................................... 49 3.4 Determinação do conteúdo protéico ........................................................................... 50 3.5 Purificação da peçonha de Anthopleura cascaia ........................................................ 50 3.5.1 Purificação por gel-filtração em gel de Sephadex G-50 ...................................... 50 3.5.2 Purificação por cromatografia de fase reversa (RP-HPLC) da fração neurotóxica da peçonha .......................................................................................................................... 50 3.6 Determinação dos espectros de massa ...................................................................... 51 3.7 Determinação da sequência N-terminal ...................................................................... 51 3.8 Pesquisa de homologia dos peptídeos neurotóxicos .................................................. 52 3.9 Análise estatística........................................................................................................ 52 3.10 Medidas eletrofisiológicas em oócitos de Xenopus laevis – Técnica de voltage clamp com dois microeletrodos ......................................................................................................... 53 3.10.1 Isolamento e preparação dos oócitos ................................................................. 53 3.10.2 Eletrofisiologia ....................................................................................................
Recommended publications
  • Dissertao De Mestrado
    DISSERTAÇÃO DE MESTRADO Clonagem e expressão do cDNA codificante para a toxina do veneno de Lasiodora sp, LTx2, em vetor de expressão pET11a. Alexandre A. de Assis Dutra Ouro Preto, Julho de 2006 Universidade Federal de Ouro Preto Núcleo de Pesquisa em Ciências Biológicas Programa de Pós-graduação em Ciências Biológicas Universidade Federal de Ouro Preto Núcleo de Pesquisa em Ciências Biológicas Programa de Pós-graduação em Ciências Biológicas Clonagem e expressão do cDNA codificante para a toxina do veneno de Lasiodora sp, LTx2, em vetor de expressão pET11a. Alexandre A. de Assis Dutra ORIENTADOR: PROF. DR. IESO DE MIRANDA CASTRO Dissertação apresentada ao programa de pós-graduação do Núcleo de Pesquisa em Ciências Biológicas da Universidade Federal de Ouro Preto, como parte integrante dos requisitos para a obtenção do Título de Mestre em Ciências Biológicas na área de concentração Biologia Molecular. Ouro Preto, julho de 2006 D978c Dutra, Alexandre A. Assis. Clonagem e expressão do DNA codificante para a toxina do veneno de Lasiodora sp, LTx2, em vetor de expressão pET11a: [manuscrito]. / Alexandre A. Assis Dutra. - 2006. xi, 87f.: il., color; graf.; tabs. Orientador: Prof. Dr. Ieso de Miranda Castro. Área de concentração: Biologia molecular. Dissertação (Mestrado) - Universidade Federal de Ouro Preto. Instituto de Ciências Exatas e Biológicas. Núcleo de Pesquisas em Ciências Biológicas. 1. Clonagem - Teses. 2. Biologia molecular -Teses. 3. Toxinas - Teses. 4. Aranha - Veneno - Teses. I.Universidade Federal de Ouro Preto. Instituto
    [Show full text]
  • Prospecção De Peptídeos Neuroativos Da Peçonha Da Aranha Caranguejeira Acanthoscurria Paulensis
    UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS Programa de Pós-Graduação em Biologia Animal Laboratório de Toxinologia CAROLINE BARBOSA FARIAS MOURÃO Prospecção de peptídeos neuroativos da peçonha da aranha caranguejeira Acanthoscurria paulensis Brasília 2012 CAROLINE BARBOSA FARIAS MOURÃO Prospecção de peptídeos neuroativos da peçonha da aranha caranguejeira Acanthoscurria paulensis Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal do Instituto de Ciências Biológicas da Universidade de Brasília como requisito parcial à obtenção do título de Mestre. Orientadora: Dra. Elisabeth Ferroni Schwartz Brasília 2012 À minha mãe, Jaqueline Barbosa, pelo apoio incondicional. À minha família, meu exemplo e suporte. Ao Lucas Caridade, por todo o carinho. À Dra. Elisabeth Schwartz, que proporcionou a realização deste projeto. À Toxinologia, que por envolver áreas tão diversas e complementares, nos permite enjoar temporariamente de uma enquanto nos divertimos com outra. Agradecimentos Primeiramente à minha querida mãe, pelo amor, suporte, incentivo e por ter sempre apoiado minhas escolhas acadêmicas. A toda minha família, pelo exemplo de união, suporte e por estarem sempre presentes. Ao meu primo Pedro Henrique pela ajuda em campo. Ao Lucas Caridade, pelo amor, companheirismo e motivação. Obrigada por fazer tudo parecer mais simples e por ser tão paciente. À Dra. Elisabeth Schwartz, pela orientação, incentivo, sugestões, e pela confiança depositada em mim. Obrigada pela oportunidade. Ao Dr. Carlos Bloch Jr., do Laboratório de Espectrometria de Massas – EMBRAPA Recursos Genéticos e Biotecnologia, por permitir acesso ao laboratório e pelos ensinamentos e sugestões ao longo desses anos. Ao Eder Barbosa, pela amizade e por me auxiliar em todos os sequenciamentos de novo realizados neste trabalho.
    [Show full text]
  • The Andean Tarantulas Euathlus Ausserer, 1875, Paraphysa Simon
    This article was downloaded by: [Fernando Pérez-Miles] On: 05 May 2014, At: 07:07 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnah20 The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions Carlos Perafána & Fernando Pérez-Milesa a Universidad de La República, Facultad de Ciencias, Sección Entomología, Iguá 4225, Montevideo, Uruguay Published online: 01 May 2014. To cite this article: Carlos Perafán & Fernando Pérez-Miles (2014): The Andean tarantulas Euathlus Ausserer, 1875, Paraphysa Simon, 1892 and Phrixotrichus Simon, 1889 (Araneae: Theraphosidae): phylogenetic analysis, genera redefinition and new species descriptions, Journal of Natural History, DOI: 10.1080/00222933.2014.902142 To link to this article: http://dx.doi.org/10.1080/00222933.2014.902142 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • Molecular Basis of the Remarkable Species Selectivity of an Insecticidal
    www.nature.com/scientificreports OPEN Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the Received: 03 February 2016 Accepted: 20 June 2016 African spider Augacephalus Published: 07 July 2016 ezendami Volker Herzig1,*, Maria Ikonomopoulou1,*,†, Jennifer J. Smith1,*, Sławomir Dziemborowicz2, John Gilchrist3, Lucia Kuhn-Nentwig4, Fernanda Oliveira Rezende5, Luciano Andrade Moreira5, Graham M. Nicholson2, Frank Bosmans3 & Glenn F. King1 The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroachPeriplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.
    [Show full text]
  • Animal Venom Components: New Approaches for Pain Treatment
    Approaches in Poultry, Dairy & Veterinary Sciences ApproachesAppro Poult Dairy in Poultry,& Vet Sci Dairy & CRIMSON PUBLISHERS C Wings to the Research Veterinary Sciences ISSN: 2576-9162 Mini Review Animal Venom Components: New Approaches for Pain Treatment Ana Cristina N Freitas and Maria Elena de Lima* Departamento de Bioquímica e Imunologia, Brazil *Corresponding author: Maria E de Lima, Departamento de Bioquímica e Imunologia, Belo Horizonte, Minas Gerais, Brazil Submission: September 09, 2017; Published: November 06, 2017 Abbreviations: NSAID: Non-Steroidal Anti-Inflammatory Drugs; FDA: Food and Drug Administration; nAChRs: Nicotinic Acetylcholine Receptors; ASICs: Acid-Sensing Ion Channel Introduction This comment has the aim to be illustrative, highlighting some At the moment, there are a great number of animal toxins examples of venoms that have shown a great potential as analgesics. that are being studied for treatment or research of many different It is not our goal to write a review of this subject, considering it is disorders, including pain. The components isolated from animal not pertinent in a brief text like this. venoms gained this interest because of their usual high potency and selectivity in which they act on their molecular targets, such Nowadays there is a lot of concern and discussion about animal as ion channels or receptors [3]. Currently, a large number of welfare, since the role that animals play in human life is far beyond pharmaceutical companies are interested in the development of of being just our pets. Animals are very important as source of drugs based on toxins. One of the most successful cases, regarding pain treatment, was the development of Ziconotide (PRIALT).
    [Show full text]
  • Araneae, Mygalomorphae, Theraphosidae) and the Production of Fibrous Materials
    FULL COMMUNICATIONS ZOOLOGY Claw tuft setae of tarantulas (Araneae, Mygalomorphae, Theraphosidae) and the production of fibrous materials. ZOOLOGY Do tarantulas eject silk from their feet? Jaromír Hajer and Dana Řeháková Department of Biology, J. E. Purkinje University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic Address correspondence and requests for materials to Jaromír Hajer, [email protected] Abstract The study focused on the specialised tarsal setae of tarantulas Avicularia metal- lica and Heteroscodra maculata, and the fibrous and non-fibrous material pro- duced by them. When irritated spiders moved along smooth, perpendicularly- oriented glass walls not covered in silk, the claw tuft setae, located at the tips of the tarsal segments, left behind footprints containing two types of fibrous material. Using electron scanning microscopy, it was discovered that these rep- resent fragments of parallelly oriented bundles of hollow fibres forming the shafts of the setae and their lateral branches (1), as well as clusters of contract- ed nanofibrils which aggregated at the ends of these fibres (2). During climbing, this fibrous material was detected both on the substratum on which the spiders were moving, and also on their claw tuft setae. The climbing activity of irritated tarantulas is also associated with the secretion of a fluid which dries on contact with air. This secretion acts as an adhesive and facilitates the movement of ta- rantulas on smooth surfaces, but while doing so it also glues together the distal, lamellar parts of the groups of setae which are in contact with the substratum during climbing. There are no such claw tuft setae morphological changes ob- served in undisturbed tarantulas, moving freely around their tube-like shelters and on the surfaces of objects covered with silk which they have produced.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Versatile Spider Venom Peptides and Their Medical and Agricultural Applications
    Accepted Manuscript Versatile spider venom peptides and their medical and agricultural applications Natalie J. Saez, Volker Herzig PII: S0041-0101(18)31019-5 DOI: https://doi.org/10.1016/j.toxicon.2018.11.298 Reference: TOXCON 6024 To appear in: Toxicon Received Date: 2 May 2018 Revised Date: 12 November 2018 Accepted Date: 14 November 2018 Please cite this article as: Saez, N.J., Herzig, V., Versatile spider venom peptides and their medical and agricultural applications, Toxicon (2019), doi: https://doi.org/10.1016/j.toxicon.2018.11.298. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Versatile spider venom peptides and their medical and agricultural applications 2 3 Natalie J. Saez 1, #, *, Volker Herzig 1, #, * 4 5 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia 6 7 # joint first author 8 9 *Address correspondence to: 10 Dr Natalie Saez, Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 11 4072, Australia; Phone: +61 7 3346 2011, Fax: +61 7 3346 2101, Email: [email protected] 12 Dr Volker Herzig, Institute for Molecular Bioscience, The University of Queensland, St.
    [Show full text]
  • March 20, 2020- Canceled Due to COVID-19 Graduate Research Conference 2020 - Canceled COVID-19 Table of Contents
    March 20, 2020- Canceled due to COVID-19 Graduate Research Conference 2020 - Canceled COVID-19 Table of Contents Welcome Letter 2 Schedule of Events 3 Abstracts: Alphabetically by Presenter Last Name 4 Thank You 49 Graduate Research Conference 2020 - Canceled COVID-19 1 Welcome to the 2020 Graduate Research Conference! On behalf of the Office of Graduate Studies and Research, I welcome you to the 2020 Graduate Research Conference. The GRC is an event that combines the primary missions of the Office of Graduate Studies and Research: The Office of Research Development and Administration and the Office of Research Compliance support and promote all research activities at EMU, including the GRC. Meanwhile, the Graduate School supports academic programs that emphasize the highest forms of intellectual development in each discipline, which includes the creation of the new knowledge that you see at the GRC. This year’s GRC is EMU’s 21st annual celebration and showcase of graduate student scholarly and creative activities. Over 200 students will deliver formal accounts of their work by way of ​ ​ 162 oral presentations, posters presentations, and artistic displays and performances. The activities they describe took significant investments of time and were performed over countless hours outside the traditional classroom. These students and their work are sponsored by over 100 faculty who wisely guided the students’ activities and, in many cases, gave students access to their laboratories, studios, and specialized equipment. This year Shawn T. Mason will be our luncheon keynote speaker. Dr. Mason was a previous presenter at the Graduate Research Conference and earned a doctoral degree in clinical psychology from EMU.
    [Show full text]
  • FERNANDO HITOMI MATSUBARA.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Biológicas Departamento de Biologia Celular FERNANDO HITOMI MATSUBARA CLONAGEM E EXPRESSÃO HETERÓLOGA DE UM PEPTÍDEO DA FAMÍLIA DAS NOTINAS PRESENTE NO VENENO DA ARANHA MARROM (Loxosceles intermedia) CURITIBA 2011 FERNANDO HITOMI MATSUBARA CLONAGEM E EXPRESSÃO HETERÓLOGA DE UM PEPTÍDEO DA FAMÍLIA DAS NOTINAS PRESENTE NO VENENO DA ARANHA MARROM (Loxosceles intermedia) Dissertação apresentada ao Programa de Pós- Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, como parte das exigências para a obtenção do título de Mestre em Biologia Celular e Molecular Orientador: Prof. Dr. Silvio Sanches Veiga a a Co-orientadora: Prof . Dr . Olga Meiri Chaim CURITIBA 2011 Aos meus pais pela oportunidade que me concederam de poder me dedicar integralmente aos estudos. Pelo apoio incondicional e generosidade constante. Muito Obrigado! AGRADECIMENTOS Ao meu orientador, Prof. Dr. Silvio Sanches Veiga, por todos os ensinamentos, incentivos e confiança nesses 2 anos. Por proporcionar a oportunidade de me integrar ao Laboratório de Matriz Extracelular e Biotecnologia de Venenos e conviver com um grupo especial de pessoas. À minha co-orientadora, Profa Dra Olga Meiri Chaim, por ser um exemplo de competência e dedicação. Por ser generosa e, sobretudo, humana, aconselhando e motivando a todo instante. Muito obrigado! À Luiza Helena Gremski, pela prontidão em me ajudar em todos os experimentos. Por ser um exemplo de profissionalismo e disciplina. Muito obrigado por toda a paciência e disposição! À Profa. Dra. Andréa Senff Ribeiro, por todos os conselhos acadêmicos e pessoais. Pelos incentivos e momentos descontraídos! À Dilza Trevisan Silva, por todo o auxílio técnico e pela grande amizade! Por tornar todos os momentos divertidos e leves! Pelo companheirismo em absolutamente todas as horas! À Valéria Pereira Ferrer, por todo o auxílio técnico e pela grande amizade! Por ser exemplo de conduta ética e pela paciência.
    [Show full text]
  • Bioinsecticides for the Control of Human Disease Vectors Niraj S Bende B
    Bioinsecticides for the control of human disease vectors Niraj S Bende B. Pharm, MRes. Bioinformatics A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Institute for Molecular Bioscience Abstract Many human diseases such as malaria, Chagas disease, chikunguniya and dengue fever are transmitted via insect vectors. Control of human disease vectors is a major worldwide health issue. After decades of persistent use of a limited number of chemical insecticides, vector species have developed resistance to virtually all classes of insecticides. Moreover, considering the hazardous effects of some chemical insecticides to environment and the scarce introduction of new insecticides over the last 20 years, there is an urgent need for the discovery of safe, potent, and eco-friendly bioinsecticides. To this end, the entomopathogenic fungus Metarhizium anisopliae is a promising candidate. For this approach to become viable, however, limitations such as slow onset of death and high cost of currently required spore doses must be addressed. Genetic engineering of Metarhizium to express insecticidal toxins has been shown to increase the potency and decrease the required spore dose. Thus, the primary aim of my thesis was to engineer transgenes encoding highly potent insecticidal spider toxins into Metarhizium in order to enhance its efficacy in controlling vectors of human disease, specifically mosquitoes and triatomine bugs. As a prelude to the genetic engineering studies, I surveyed 14 insecticidal spider venom peptides (ISVPs) in order to compare their potency against key disease vectors (mosquitoes and triatomine bugs) In this thesis, we present the structural and functional analysis of key ISVPs and describe the engineering of Metarhizium strains to express most potent ISVPs.
    [Show full text]
  • Molecular Simulations of Disulfide-Rich Venom Peptides With
    molecules Review Review Molecular SimulationsSimulations ofof Disulfide-RichDisulfide-Rich VenomVenom Peptides withwith IonIon ChannelsChannels andand MembranesMembranes Evelyne Deplazes 1,2 Evelyne Deplazes 1,2 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, 1 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, WA 6102, Australia; [email protected] Perth, WA 6102, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia QLD 4072, Australia Academic Editor: Roberta Galeazzi Academic Editor: Roberta Galeazzi Received: 8 February 2017; Accepted: 24 February 2017; Published: date Received: 8 February 2017; Accepted: 24 February 2017; Published: 27 February 2017 Abstract:Abstract: Disulfide-richDisulfide-rich peptides isolated isolated from from the the venom venom of of arthropods arthropods and and marine marine animals animals are are a arich rich source source of of potent potent and and selective selective modulators modulators of of ion ion channels. channels. This This makes these peptides valuable leadlead moleculesmolecules forfor thethe developmentdevelopment ofof newnew drugsdrugs toto treattreat neurologicalneurological disorders.disorders. Consequently,Consequently, much effort goes into understanding understanding their their mechanis mechanismm
    [Show full text]