Criminal Justice and Genetic Genealogy

Total Page:16

File Type:pdf, Size:1020Kb

Criminal Justice and Genetic Genealogy Unraveling A podcast about science, technology, and criminal justice By: Emma Peaslee 1 Table of Contents: TABLE OF CONTENTS: ................................................................................................................................................................ 2 INTRODUCTION ............................................................................................................................................................................ 3 LITERATURE REVIEW ................................................................................................................................................................ 5 THE HISTORY OF DNA AND CRIME ...............................................................................................................................................................5 THE BUSINESS OF GENETIC GENEALOGY ......................................................................................................................................................8 CRIMINAL JUSTICE AND GENETIC GENEALOGY ........................................................................................................................................ 10 PRIVACY CONCERNS ........................................................................................................................................................................................ 14 METHODOLOGY ......................................................................................................................................................................... 19 LIMITATIONS .................................................................................................................................................................................................... 21 2 Introduction In Edmonds, Wash., a young woman went on a bike ride and never came home. Her body was eventually found in the woods. She had been shot in the head. A young boy was believed to be in South Korea with his mother. His body was discovered beneath a billboard in North Carolina. He had been strangled. In La Jolla, Calif., a woman was found stabbed in her home. The detectives found blood in multiple rooms. These crimes took place decades ago, scattered across the country, but they were all solved within the last year. They were not committed by the same mysterious killer, but they were all solved by the same mysterious technology. What started as a way to research family history and discover distant relatives has created a breakthrough in criminal investigations. Over the past decade, websites like 23andMe and Ancestry have popularized a business known as genetic genealogy. Genetic genealogy involves profiling DNA in combination with traditional genealogical methods to infer familial relationships. But this new DNA technology has recently been used to do more than just find great-grandparents.1 In April 2018, police announced the arrest of the “Golden State Killer” due largely to an “innovation in DNA technology” otherwise known as genetic genealogy.2 A serial rapist and murderer, the suspect was responsible for dozens of attacks throughout the state of California in the ’70s and ’80s. The case had largely come to dead end despite years of work by law enforcement and FBI. The April arrest marked the first time this technology caught the attention of both the public and investigators across the country, and it signaled a shift in the future of criminal investigation. 1 Heather Murphy, “Sooner or Later Your Cousin’s DNA is Going to Solve a Murder,” The New York Times, April 25, 2019, https://www.nytimes.com/2019/04/25/us/golden-state-killer-dna.html, (accessed October 4, 2019). 2 Murphy, “Sooner or Later Your Cousin’s DNA is Going to Solve a Murder,” The New York Times. 3 The police worked with a genetic genealogist to convert and upload the anonymous killer’s DNA to a public genealogy website. These websites provide different information than traditional police DNA databases because they allow access to the genetic information of everyday people, not just criminals. They also don’t require a direct match. Investigators can find potential suspects even when the suspect’s genetic information is not on the site. The matches are often based on a distant relative, and investigators work backward to build a family tree for their suspect from that data. This information acts as a tip that points police in the right direction. The closer the match the easier it is for investigators to track down potential suspects. Less than two years after the Golden State Killer arrest, genetic genealogy is being used in police departments across the country to solve cold-cases, identify remains, and even overturn a conviction. The new technology has implications for thousands of unsolved cold- cases and unidentified bodies still out there. However, some of the larger companies have already become wary of police searches and have created specific guidelines to prevent the sharing of DNA without customers’ knowledge. Privacy advocates say this fear is warranted because while traditional police DNA databases only provide a genetic fingerprint, genetic genealogy databases can provide information about a person’s appearance, medical conditions, and even potential predispositions to mental health problems.3 The steps police are taking have led them to uncharted territory. What happens when technology advances before the regulations? My project will be several audio stories featuring people who are for and against this new technology. Who is benefitting and who could be⎯ or already has been⎯ hurt by genetic genealogy? Privacy advocates believe there is a reason to be concerned with law enforcement's unfettered access to people’s genetic information. According to a recent study, 60% of Americans of Northern 3 Tina Hesman Saey, “Genealogy companies could struggle to keep clients’ data from police,” ScienceNews, June 10, 2019, https://www.sciencenews.org/article/forensic-genetic-genealogy-companies-police-privacy, (accessed September 28, 2019). 4 European descent, the primary users, can be identified through the databases whether or not they’ve submitted their genetic information.4 In two to three years, that number is expected to be closer to 90%. The future of privacy and genetic genealogy will have implications for the American population whether they ever use the service. Literature Review The History of DNA and Crime One of the first uses of deoxyribonucleic acid or DNA to solve a criminal investigation was in England in the 1980’s.5 A genetic professor at the University of Leicester, Alec Jeffreys, discovered that DNA could be used to tell people apart. Much like the origins of genetic genealogy, Jeffreys had mostly been using this new advancement for connecting family members. However, others saw the implications for criminal investigations after two local rape and murder cases perplexed police. Jeffreys was recruited and then able to link the two cases to the same killer and rule out a prime suspect with DNA analysis. The killer was eventually caught when the police put out a call for DNA samples and overheard a person saying they’d been paid to pose as someone else for the round-up. The police then tested the man who had attempted to evade them. When confronted with the DNA match, he confessed. The process Jeffreys used to help catch the killer is what’s known as “DNA profiling.”6 4 Yaniv Erlich, Tal Shor, Itsik Pe’er, Shai Carmi, “Identify inferences of genomic data using long-range familial searches,” Science, Vol. 362, Issue 6415, pp. 690-694, November 9, 2018, https://science.sciencemag.org/content/362/6415/690. 5 Celia Henry Arnaud, “Thirty years of DNA forensics: How DNA has revolutionized criminal investigations,” Chemical & Engineering News 95, no. 37 (2017): 16-20, https://cen.acs.org/articles/95/i37/Thirty-years-DNA-forensics- DNA.html. 6 Lutz Roewer, “DNA fingerprinting in forensics: past, present, future,” Investigative Genetics 4, no. 22 (2013), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831584/. 5 What followed that first breakthrough has been considered a “golden research age” for DNA and criminal investigations.7 DNA is a genetic code containing four letters: A, T, G, and C. These letters are the bases of DNA, and they are interpreted by the cells to make molecules and structures that allow the body to function.8 DNA contains areas where short sequences of bases are repeated several times, and they’re found in many different spots throughout the genome or an organism’s complete set of DNA.9 The exact number of repeats is different for each person so scientists can use this information to identify people.10 During those first criminal cases done by Jeffreys, the DNA profiling process took six to eight weeks. In the 1990’s, the forensics community switched to shorter repeating sequences known as short tandem repeats (STRs). This update allowed the process to become faster and more automated. In addition to this development, a biochemist named Kary Mullis developed polymerase chain reaction (PCR). In PCR, enzymes “amplify” DNA samples by copying them. This makes it easier to get DNA profiles from smaller samples.11 With these advancements, technicians can take a single strand of DNA and copy it a million times over in a couple of hours. This allows people like forensic scientists to get a lot of information from even very small DNA samples. Much like the police in Leicester discovered after Jeffreys joined the case, DNA evidence is not
Recommended publications
  • An Alternate Universe Lacking the Existence of Genetic Genealogy
    Chapter 6 Life Bar ‘The Golden Standard’ – An Alternate Universe Lacking the Existence of Genetic Genealogy Georgina Tomas Genes are like a story, and DNA is the language that story is written in. (Sam Kean, American Author) With forensic DNA analysis widely regarded as the ‘golden standard’ of forensic evidence, case investigations and criminal cases have shown that genetic genealogy is pivotal in discovering who the perpetrator is. Through the interpretation of DNA testing and its new adaptation of credibility towards case investigations, it will lead to the establishment of what genetic genealogy is and how it has made an impact in the progressions of forensic evidence. To propose a hypothetical situation where genetic genealogy does not exist, one can examine the impacts on individuals in society and in investigation. Understanding genetic genealogy is key in ensuring that further advancements take place in the novel field of forensic science, as it concerns the nature of DNA analysis, from the many fallibilities of processing to the standardization practices across all laboratories. The importance of forensic genetics will be distinguished through a hypothetical universe inexistent of genetic genealogy prior to the Golden State Killer (GSK) case. The absence of genetic genealogy will be used to highlight the divergence in an alternate timeline to then unravel the major impacts it would further have on the GSK case. The external consequences that would be involved in the justice system regarding social and privacy-related issues will also be examined. 59 The Forensic Science Alternate Universe Golden State Killer Case Between 1974 and 1986, the name ‘Golden State Killer’ was the moniker for a man by the name of Joseph James DeAngelo.
    [Show full text]
  • How Anne Wojcicki Took the Start-Up Firm from the Brink of Failure to Scientific Pre-Eminence
    THE RISE, FALL AND RISE AGAIN OF 23ANDME HOW ANNE WOJCICKI TOOK THE START-UP FIRM FROM THE BRINK OF FAILURE TO SCIENTIFIC PRE-EMINENCE. BY ERIKA CHECK HAYDEN 174 | NATURE | VOL 550 | 12 OCTOBER©2017 2017Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. FEATURE NEWS Anne Wojcicki founded the Alzheimer’s disease. Surfing a wave of positive news, the company has consumer-genetics firm since launched an advertising blitz to dramatically expand its customer 23andme in 2006 and aims base to 10 million people. to expand its customer 23andme has always been the most visible face of direct-to-consumer base to 10 million. genetic testing, and it is more formidable now than ever before. In September, the company announced that it had raised US$250 million: more than the total amount of capital raised by the company since its inception. Investors estimate that it is worth more than $1 billion, making it a ‘unicorn’ in Silicon Valley parlance — a rare and valuable thing to behold. But for scientists, 23andme’s real worth is in its data. With more than 2 million customers, the company hosts by far the largest collection of gene-linked health data anywhere. It has racked up 80 publications, signed more than 20 partnerships with pharmaceutical firms and started a therapeutics division of its own. “They have quietly become the largest genetic study the world has ever known,” says cardiologist Euan Ashley at Stanford University, California.
    [Show full text]
  • Why Is This $99 Home DNA Kit Causing Such an Uproar?
    http://genomemag.com/ Your Health Is Personal Why Is This $99 Home DNA Kit Causing Such an Uproar? 23andMe says it can provide you with valuable health information about your genes. The FDA says prove it. What the consumer genetic testing battle means for you. BY JOSEPH GUINTO Would you give someone you love a small plastic vial for her birthday and ask her to spit into it? Rob Abrams did. His wife, Caitlin, couldn’t have been happier. She liked it so much she gave Rob the same thing for Christmas. “It was,” Caitlin says, “the most nerdy gift I have ever given and received.” The package — a small tube, removable cap, and sealable spit funnel — was a genetic testing kit from California company 23andMe. The Abramses spent $299 on each kit in 2011. Once the couple mailed in their tubes, 23andMe tested their saliva for hundreds of genetic markers. The markers pointed toward clinically useless but nevertheless interesting ancestral information (look, Caitlin had 2.9 percent Neanderthal DNA!). They also pointed toward dozens of potential health risks. By comparing some of the couple’s DNA to a database of genetic indicators, the company said it could tell them whether they were at increased risk for a range of diseases, including Alzheimer’s disease, breast or prostate cancer, type 2 diabetes, hypertension, heroin addiction, and amyotrophic lateral sclerosis. And celiac disease, which Caitlin already knew she had. “I was most interested in possible inherited diseases,” she says. “I’d been diagnosed with celiac disease only a year or two prior, and given that my husband and I planned to have children, I thought it might be helpful to see if I was genetically predisposed to it.
    [Show full text]
  • DNA DOE Project Our First Two Years of Success
    DNA DOE Project Our First Two Years of Success ISHI 30 24 Sep 2019 Colleen Fitzpatrick, PhD Margaret Press, PhD Co-Founders DNA Doe Project DNA DOE Project Chronology • Feb 2017 First discussions • Jul 10, 2017 First sample sent to lab for sequencing • Sep 27, 2017 Joseph Chandler case uploaded to GEDmatch • Oct 2017 Incorporated as 501(c)3 • Mar 6, 2017 Joseph Newton Chandler identified • Mar 29, 2017 Buckskin Girl Identified DNA Doe Project Stats Sept 2019 Volunteers ~ 70 Shortest Solve Time 4 hrs Longest Solve Time 19 ½ mos Avg Solve Time 60 days (no outliers) More DNA Doe Project Stats Sep 2019 Waiting shipment to lab 3 Bone extraction stage 6 DNA Processing 19 Bioinformatics 7 Genealogical Research 17 ~50% Success rate Success Stories 16 Only 1 slam dunk Total 68 SuccessPendingActiveAll CasesStories Cases © 2019 Sarah Kladar Initial Challenge of Using Degraded DNA Question: Would genetic genealogy tools work for degraded samples? Joseph Newton Chandler III • DNA was degraded – 88% No calls • Nonuniform SNP Distribution Call Rate Call SNP Coordinate Initial Challenge - Degraded DNA • Experimented with Confidence Levels Call Rate Call SNP Coordinate High confidence: Few matches We found a happy medium We still use a three- kit model Low confidence: Many matches Initial Challenge - Degraded DNA • Degraded Our Own 23&Me data to match Chandler’s, compared matches before & after Rank on GEDmatch on After Rank GEDmatch Closest matches are the same rank Rank on GEDmatch Before Initial Challenge - Degraded DNA • Two 30x sequences ➔ One 60x
    [Show full text]
  • Lesson Plan & Teacher's Guide
    LESSON PLAN & TEACHER’S GUIDE DNA, Crime, and Law Enforcement Aim How will advances in DNA technology impact individuals, law enforcement and society? Time This lesson can be adjusted to fill 1 or 2 days. Guiding questions • How is scientific progress affecting how DNA is used to solve crimes in the United States? • What are the benefits and dilemmas of collecting DNA from people when they are arrested, but before they have been charged with a crime? • As a society, how should we balance privacy rights with the rights of crime victims? • How can DNA evidence be used to free innocent people? • How are different communities (within and outside your own) affected by the policies and procedures around DNA collection and law enforcement? Learning objectives By the end of this lesson, students will be able to: • Discuss why the number of people in DNA databases is on the rise. • Discuss the ethical issues surrounding the use of familial searching to solve crimes. • Analyze some of the controversies in using DNA to solve crimes. Personal Genetics Education Project (pgEd.org) 1 Rev. 2019 • Debate the issues around privacy, laws, freedom and public safety as they relate to DNA technology and crime. • Recognize some of the unintended consequences of how and why DNA is collected and used by law enforcement. Materials Projector or Smartboard, laptop, handouts. Standards alignment Common Core Standards CCSS.ELA-LITERACY.RH.9-10.6. CoMpare the point of view of two or More authors for how they treat the saMe or siMilar topics, including which details they include and eMphasize in their respective accounts.
    [Show full text]
  • Genetic Genealogy and Its Use in Criminal Investigations: Are We Heading Towards a Universal Genetic Database?
    Volume 15 Spring 2019 djim.management.dal.ca | Genetic Genealogy and its Use in Criminal Investigations: Are We Heading Towards a Universal Genetic Database? Emily Plemel School of Information Management, Dalhousie University Abstract In April 2018, Joseph DeAngelo also known as The Golden State Killer was caught and convicted. This was made possible by 40-year-old DNA evidence, genetic genealogy, and current information systems technology. This paper will discuss the history of genetic information such as DNA testing used in forensics, and consider information technologies effect on the future of criminal investigations. The main focus is genetic databases and their management. How will the management of these databases affect the public and law enforcement? Could a universal genetic database create solutions to the current criminal database systems, often critiqued for being discriminatory? How can we use genetic genealogy more efficiently to solve crimes? The sources used for this exploration include companies such as GEDmatch, 23andME, and Ancestry; key players of the field such as Barbara Rae Venter and CeCe Moore; newspaper articles, statistics, and academic journals. Keywords: DNA, genetic genealogy, cold-case, crime solving, forensic investigation, genetic database, information management, universal database 1 Lately, a small industry has been gaining and investigation process should be attention in the fields of criminal understood as follows. investigation and information management, The Procedure as it Currently that is, solving cold cases using genetic Stands genealogy and genetic information To explain the current process I will be databases. Already, there have been a few consulting information from Parabon key players identified in this growing field Nanolabs Inc., the company from which in North America; Cece Moore, Parabon CeCe Moore operates.
    [Show full text]
  • Article I, Section 7, Law Enforcement, and Commercial DNA Databases
    Washington Law Review Volume 95 Number 4 12-1-2020 The Thickness of Blood: Article I, Section 7, Law Enforcement, and Commercial DNA Databases Hannah Parman [email protected] Follow this and additional works at: https://digitalcommons.law.uw.edu/wlr Part of the Constitutional Law Commons, and the State and Local Government Law Commons Recommended Citation Hannah Parman, Comment, The Thickness of Blood: Article I, Section 7, Law Enforcement, and Commercial DNA Databases, 95 Wash. L. Rev. 2057 (2020). Available at: https://digitalcommons.law.uw.edu/wlr/vol95/iss4/10 This Comment is brought to you for free and open access by the Law Reviews and Journals at UW Law Digital Commons. It has been accepted for inclusion in Washington Law Review by an authorized editor of UW Law Digital Commons. For more information, please contact [email protected]. Parman (1) (Do Not Delete) 12/19/2020 6:01 PM THE THICKNESS OF BLOOD: ARTICLE I, SECTION 7, LAW ENFORCEMENT, AND COMMERCIAL DNA DATABASES Hannah Parman* Abstract: Law enforcement agencies increasingly use online commercial and open source DNA databases to identify suspects in cases that have long since gone cold. By uploading crime scene DNA to one of these websites, investigators can find family members who have used the website and build a family tree leading back to the owner of the original DNA. This is called “familial DNA searching.” The highest profile use of this investigative method to date occurred in California, but law enforcement in Washington State has been quick to begin utilizing the method as well.
    [Show full text]
  • DNA Hit of the Year 2019 Top 17 Cases
    DNA Hit of the Year 2019 Top 17 Cases DNA Hit of the Year 2019 Top 17 Cases 1. Filipino housemaid found headless and handless in Dubai Country/State: Dubai - United Arab Emirates Year of Crime and Hit: 2016 and 2016 Executive Summary: A woman was found with her head and hands cut off. After 3 months of investigation Dubai poLice determined her identity by comparing her DNA to the personaL beLongings of a missing housemaid, a FiLipino woman named Manormeeta SaLwaro Dadi. The murder suspect’s DNA was obtained from the dead body. Investigations reveaLed the murderer may have been reLative. Police then profiled several of Dadi’s relatives and a match was found. The relative confessed when confronted. Scientific Importance: This woman was almost unidentifiable without a head and hands. Police cross-referenced the date and other details of this woman with active missing person cases throughout the country. This Led investigators to the house where she was a housemaid, Leading to DNA samples and a match. Investigative Importance: Dubai police had to sift through 9,751 missing women (runaway maids) cases to find leads for this particular case. Other: Murderer was a butcher who used his knowLedge and expertise as a butcher to cut off the head and hands of the victim. The murderer cLaimed that he was infLuenced by “zombie movies” to murder the victim in a such a way. Submitted Story: On 25 May 2016, a gruesome discovery was made of a decapitated female body with severed hands and stab wounds to the torso, road-side in a desert area in Dubai.
    [Show full text]
  • The Fourth Amendment and the Search of Private Genetic Databases by Law Enforcement
    Fordham Law Review Volume 87 Issue 6 Article 10 2019 Guilt By Genetic Association: The Fourth Amendment and the Search of Private Genetic Databases by Law Enforcement Claire Abrahamson Fordham University School of Law Follow this and additional works at: https://ir.lawnet.fordham.edu/flr Part of the Constitutional Law Commons, Criminal Procedure Commons, Fourth Amendment Commons, and the Science and Technology Law Commons Recommended Citation Claire Abrahamson, Guilt By Genetic Association: The Fourth Amendment and the Search of Private Genetic Databases by Law Enforcement, 87 Fordham L. Rev. 2539 (2019). Available at: https://ir.lawnet.fordham.edu/flr/vol87/iss6/10 This Note is brought to you for free and open access by FLASH: The Fordham Law Archive of Scholarship and History. It has been accepted for inclusion in Fordham Law Review by an authorized editor of FLASH: The Fordham Law Archive of Scholarship and History. For more information, please contact [email protected]. NOTES GUILT BY GENETIC ASSOCIATION: THE FOURTH AMENDMENT AND THE SEARCH OF PRIVATE GENETIC DATABASES BY LAW ENFORCEMENT Claire Abrahamson* Over the course of 2018, a number of suspects in unsolved crimes have been identified through the use of GEDMatch, a public online genetic database. Law enforcement’s use of GEDMatch to identify suspects in cold cases likely does not constitute a search under the Fourth Amendment because the genetic information hosted on the website is publicly available. Transparency reports from direct-to-consumer (DTC) genetic testing providers like 23andMe and Ancestry suggest that federal and state officials may now be requesting access to private genetic databases as well.
    [Show full text]
  • The Fourth Amendment Does Not Require Law Enforcement Officials to Get a Warrant to Search Third- Party Consumer Genetics Websites Charles D
    LEGAL MEMORANDUM No. 273 | OCTOBER 29, 2020 EDWIN MEESE III CENTER FOR LEGAL & JUDICIAL STUDIES The Fourth Amendment Does Not Require Law Enforcement Officials to Get a Warrant to Search Third- Party Consumer Genetics Websites Charles D. Stimson “What’s left of the Fourth Amendment?” That is KEY TAKEAWAYS the question asked by Associate Justice Neil Gorsuch in his dissent in the 2018 case of Carpenter v. United The consumer genetics industry has given States.1 The majority held that police may not collect individuals the opportunity to learn about historical cell-site location information (CSLI) from their family heritage, genetic identity, and health risks they may have. a mobile phone provider without a search warrant, at least when the police seek seven days or more of that information.2 But the holding has broader implica- When consumers voluntarily contract tions well beyond CSLI. It marks a key inflection point with genetics companies, get a report, and post it to a third-party public in Fourth Amendment jurisprudence, protection of website, they knowingly expose pri- privacy, and the ever-changing role of technology in vate information. our everyday lives.3 The decision in Carpenter may require the police The Fourth Amendment does not prohibit to get a warrant for a host of information that are 4 law enforcement from accessing this in the hands of third parties. However, there are information without a warrant and using it limits to its reach, and certain items, voluntarily and in criminal investigations. knowingly provided to third parties, fall outside the warrant requirement of Carpenter.
    [Show full text]
  • The Genetic Panopticon: Genetic Genealogy Searches and the Fourth Amendment
    Northwestern Journal of Technology and Intellectual Property Volume 18 Issue 3 Article 2 Spring 5-30-2021 THE GENETIC PANOPTICON: GENETIC GENEALOGY SEARCHES AND THE FOURTH AMENDMENT Genevieve Carter Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/njtip Part of the Fourth Amendment Commons, Privacy Law Commons, and the Science and Technology Law Commons Recommended Citation Genevieve Carter, THE GENETIC PANOPTICON: GENETIC GENEALOGY SEARCHES AND THE FOURTH AMENDMENT, 18 NW. J. TECH. & INTELL. PROP. 311 (2021). https://scholarlycommons.law.northwestern.edu/njtip/vol18/iss3/2 This Note is brought to you for free and open access by Northwestern Pritzker School of Law Scholarly Commons. It has been accepted for inclusion in Northwestern Journal of Technology and Intellectual Property by an authorized editor of Northwestern Pritzker School of Law Scholarly Commons. NORTHWESTER N J O U R N A L OF TECHNOLOG Y AND INTELLECTUAL PROPERT Y THE GENETIC PANOPTICON: GENETIC GENEALOGY SEARCHES AND THE FOURTH AMENDMENT Genevieve Carter May 2021 VOL. 18, NO. 3 © 2021 by Genevieve Carter Copyright May 2021 by Genevieve Carter Volume 18, Number 3 (May 2021) Northwestern Journal of Technology and Intellectual Property THE GENETIC PANOPTICON: GENETIC GENEALOGY SEARCHES AND THE FOURTH AMENDMENT Genevieve Carter ABSTRACT— I. INTRODUCTION .................................................................................................... 311 II. TRADITIONAL DNA DATABASE SEARCH VERSUS FAMILIAL DNA SEARCHES ....... 313 A. CODIS
    [Show full text]
  • An Interview with Anne Wojcicki
    INTERVIEW Your Data to Explore: An Interview with Anne Wojcicki Jane Gitschier* Departments of Medicine and Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America * [email protected] How can we not be intrigued by secrets held within our genomes? 23andMe erupted onto the biotech landscape in 2006 to satisfy that curiosity with its promise of genetics fun. For a little bit of spit and a few hundred dollars, we could check out genetic predictions for traits we already know we have—perhaps blonde hair or blue eyes—as well as susceptibilities for diseases we may have yet to develop, such as cancer or diabetes. While other small companies took on sober analysis of disease traits and data delivery back to the physician or patient with genetic counseling, 23andMe eschewed the traditional paternalism of American medicine and espoused direct-to-consumer testing. Added to that moxie was a snappy high-tech pedigree. The company was founded by Anne Wojcicki, Linda Avey, and Paul Cusenza and bankrolled in some measure by Google’s Sergey Brin, with whom Wojcicki has two children but from whom she is now divorced. I have to admit that I have been rooting for 23andMe since its inception (full disclosure: I have no financial link to this company, but I have used their service). I like its efficiency and its premise that individuals, with today’s technology, should have full access to their own genetic information, despite the caveat of sometimes challenging interpretation. I also like the idea of people contributing directly to human genetics research online, something 23andMe incorpo- rated into their model right from the beginning.
    [Show full text]