Robin Pemantle's Lecture Notes Cornell Summer School In
Total Page:16
File Type:pdf, Size:1020Kb
i Robin Pemantle’s Lecture Notes Cornell Summer School in Probability 6 July – 17 July, 2009 Contents 1 Fourier-Laplace integrals 1-1 1.1Laplace-typeintegralsinonevariable...................... 1-2 1.2Laplace-typeintegralsinseveralvariables................... 1-4 1.3Complexphases.................................. 1-7 2 Generating functions 2-1 2.1Formalpowerseriesandcombinatorialenumeration............. 2-1 2.2Applicationsinprobability........................... 2-5 2.3Coefficientextractionandtransfertheorems.................. 2-8 3LLDandLCLT 3-1 3.1Thesmoothpointtheorem........................... 3-2 3.2Locallargedeviations.............................. 3-4 3.3LocalCLT..................................... 3-7 3.4Smoothpointapplications............................ 3-8 5 Proofs 5-1 5.1Firstproof..................................... 5-1 5.2Secondproofandcanonicalrepresentations.................. 5-3 5.3Non-smoothpoints-asketchoffurtherresults................ 5-6 iii Bibliography [ABG70] M. Atiyah, R. Bott, and L. G˚arding. Lacunas for hyperbolic differential oper- ators with constant coefficients. Acta Mathematica, 124:109–189, 1970. [AGZV88] V. I. Arnol’d, S. M. Guse˘ın-Zade, and A. N. Varchenko. Singularities of Dif- ferentiable Maps. Vol. II. Birkh¨auser Boston Inc., Boston, MA, 1988. Mon- odromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous, Translation revised by the authors and James Montaldi. [AN72] K. Athreya and P. Ney. Branching Processes. Springer-Verlag, New York, 1972. [BBMD+02] Cyril Banderier, Mireille Bousquet-M´elou, Alain Denise, Philippe Flajolet, Dani`ele Gardy, and Dominique Gouyou-Beauchamps. Generating functions for generating trees. Discrete Math., 246(1-3):29–55, 2002. Formal power series and algebraic combinatorics (Barcelona, 1999). [BMP00] M. Bousquet-Melou and M. Petkovsek. Linear recurrences with constant co- efficients: the multivariate case. Discrete Math., 225:51–75, 2000. [BP08] Y. Baryshnikov and R. Pemantle. Tilings, groves and multiset permutations: asymptotics of rational generating functions whose pole set is a cone. arXiv, http://front.math.ucdavis.edu/0810.4898: 79, 2008. [CC86] J.T. Chayes and L. Chayes. Ornstein-zernike behavior for self-avoiding walks at all non-critical temperatures. Comm. Math. Phys., 105:221–238, 1986. [CEP96] Henry Cohn, Noam Elkies, and James Propp. Local statistics for random domino tilings of the Aztec diamond. Duke Math. J., 85(1):117–166, 1996. REFS-1 REFS-2 BIBLIOGRAPHY [DeV09] T. DeVries. A bivariate rational generating function of geometric interest. Preprint, page 20, 2009. [DSS09] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on Algebraic Statistics. Oberwolfach Seminars. Birk¨auser, Boston, 2009. [Fel68] W. Feller. An Introduction to Probability Theory and its Applications, vol. I. John Wiley & Sons, New York, third edition, 1968. [FO90] Philippe Flajolet and Andrew Odlyzko. Singularity analysis of generating functions. SIAM J. Discrete Math., 3(2):216–240, 1990. [FS08] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008. [GS64] I. Gelfand and G. Shilov. Generalized Functions, volume I: Properties and Operations. Academic Press, New York, 1964. [Hay56] W. Hayman. A generalisation of Stirling’s formula. J. Reine Angew. Math., 196:67–95, 1956. [H¨or90] Lars H¨ormander. An Introduction to Complex Analysis in Several Variables. North-Holland Publishing Co., Amsterdam, third edition, 1990. [HR17] G.H. Hardy and S. Ramanujan. Asymptotic formule for the distribution of integers of various types. Proceedings of the London Mathematical Society, 16:112–132, 1917. [JPS98] W. Jockusch, J. Propp, and P. Shor. Random domino tilings and the arctic circle theorem. arXiv, math.CO/9801068:37, 1998. [Law91] G Lawler. Intersections of Random Walks. Probability and its Applications. Birkh¨auser, Boston, 1991. [LL08] G. Lawler and V. Limic. Symmetric random walk. manuscript in preparation, 2008. [Lug09] M. Lugo. Profiles of permutations. Preprint, page 20, 2009. [Odl95] A. M. Odlyzko. Asymptotic enumeration methods. In Handbook of Combina- torics, pages 1063–1229. Elsevier, Amsterdam, 1995. BIBLIOGRAPHY REFS-3 [Pem09] R. Pemantle. Lecture notes on analytic combinatorics in several variables. Unpublished manuscript, page 210, 2009. [P´ol69] G. P´olya. On the number of certain lattice polygons. J. Comb. Theory, 6:102– 105, 1969. [PW02] R. Pemantle and M. Wilson. Asymptotics of multivariate sequences. I. Smooth points of the singular variety. J. Combin. Theory Ser. A, 97(1):129–161, 2002. [PW04] R. Pemantle and M. Wilson. Asymptotics of multivariate sequences, II. Mul- tiple points of the singular variety. Combin. Probab. Comput., 13:735–761, 2004. [PW08] R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions. SIAM Review, 50:199–272, 2008. [PW09] R. Pemantle and M. Wilson. Asymptotic expansions of oscillatory integrals with complex phase. preprint, page 17, 2009. [Rie49] M. Riesz. L’int´egrale de riemann-liouville et le probl`emedecauchy. Acta Mathematica, 81:1–223, 1949. [Roc66] R.T. Rockefellar. Convex analysis. Princeton University Press, Princeton, 1966. [Spi64] F. Spitzer. Principles of Random Walk. The university series in higher math- ematics. Van Nostrand, Princeton, 1964. [Sta97] Richard P. Stanley. Enumerative Combinatorics. Vol. 1. Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. [Ste93] Elias M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. [Var77] A. N. Varchenko. Newton polyhedra and estimation of oscillating integrals. Functional Anal. Appl., 10:175–196, 1977. REFS-4 BIBLIOGRAPHY [Wil94] Herbert S. Wilf. generatingfunctionology. Academic Press Inc., Boston, second edition, 1994..