RIEMANN's HYPOTHESIS 1. Gauss There Are 4 Prime Numbers Less
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalized Riemann Hypothesis Léo Agélas
Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics. -
Polynomial Sequences of Binomial Type and Path Integrals
Preprint math/9808040, 1998 LEEDS-MATH-PURE-2001-31 Polynomial Sequences of Binomial Type and Path Integrals∗ Vladimir V. Kisil† August 8, 1998; Revised October 19, 2001 Abstract Polynomial sequences pn(x) of binomial type are a principal tool in the umbral calculus of enumerative combinatorics. We express pn(x) as a path integral in the “phase space” N × [−π,π]. The Hamilto- ∞ ′ inφ nian is h(φ)= n=0 pn(0)/n! e and it produces a Schr¨odinger type equation for pn(x). This establishes a bridge between enumerative P combinatorics and quantum field theory. It also provides an algorithm for parallel quantum computations. Contents 1 Introduction on Polynomial Sequences of Binomial Type 2 2 Preliminaries on Path Integrals 4 3 Polynomial Sequences from Path Integrals 6 4 Some Applications 10 arXiv:math/9808040v2 [math.CO] 22 Oct 2001 ∗Partially supported by the grant YSU081025 of Renessance foundation (Ukraine). †On leave form the Odessa National University (Ukraine). Keywords and phrases. Feynman path integral, umbral calculus, polynomial sequence of binomial type, token, Schr¨odinger equation, propagator, wave function, cumulants, quantum computation. 2000 Mathematics Subject Classification. Primary: 05A40; Secondary: 05A15, 58D30, 81Q30, 81R30, 81S40. 1 Polynomial Sequences and Path Integrals 2 Under the inspiring guidance of Feynman, a short- hand way of expressing—and of thinking about—these quantities have been developed. Lewis H. Ryder [22, Chap. 5]. 1 Introduction on Polynomial Sequences of Binomial Type The umbral calculus [16, 18, 19, 21] in enumerative combinatorics uses poly- nomial sequences of binomial type as a principal ingredient. A polynomial sequence pn(x) is said to be of binomial type [18, p. -
A Short and Simple Proof of the Riemann's Hypothesis
A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35. -
Zeta Functions and Chaos Audrey Terras October 12, 2009 Abstract: the Zeta Functions of Riemann, Selberg and Ruelle Are Briefly Introduced Along with Some Others
Zeta Functions and Chaos Audrey Terras October 12, 2009 Abstract: The zeta functions of Riemann, Selberg and Ruelle are briefly introduced along with some others. The Ihara zeta function of a finite graph is our main topic. We consider two determinant formulas for the Ihara zeta, the Riemann hypothesis, and connections with random matrix theory and quantum chaos. 1 Introduction This paper is an expanded version of lectures given at M.S.R.I. in June of 2008. It provides an introduction to various zeta functions emphasizing zeta functions of a finite graph and connections with random matrix theory and quantum chaos. Section 2. Three Zeta Functions For the number theorist, most zeta functions are multiplicative generating functions for something like primes (or prime ideals). The Riemann zeta is the chief example. There are analogous functions arising in other fields such as Selberg’s zeta function of a Riemann surface, Ihara’s zeta function of a finite connected graph. We will consider the Riemann hypothesis for the Ihara zeta function and its connection with expander graphs. Section 3. Ruelle’s zeta function of a Dynamical System, A Determinant Formula, The Graph Prime Number Theorem. The first topic is the Ruelle zeta function which will be shown to be a generalization of the Ihara zeta. A determinant formula is proved for the Ihara zeta function. Then we prove the graph prime number theorem. Section 4. Edge and Path Zeta Functions and their Determinant Formulas, Connections with Quantum Chaos. We define two more zeta functions associated to a finite graph - the edge and path zetas. -
A RIEMANN HYPOTHESIS for CHARACTERISTIC P L-FUNCTIONS
A RIEMANN HYPOTHESIS FOR CHARACTERISTIC p L-FUNCTIONS DAVID GOSS Abstract. We propose analogs of the classical Generalized Riemann Hypothesis and the Generalized Simplicity Conjecture for the characteristic p L-series associated to function fields over a finite field. These analogs are based on the use of absolute values. Further we use absolute values to give similar reformulations of the classical conjectures (with, perhaps, finitely many exceptional zeroes). We show how both sets of conjectures behave in remarkably similar ways. 1. Introduction The arithmetic of function fields attempts to create a model of classical arithmetic using Drinfeld modules and related constructions such as shtuka, A-modules, τ-sheaves, etc. Let k be one such function field over a finite field Fr and let be a fixed place of k with completion K = k . It is well known that the algebraic closure1 of K is infinite dimensional over K and that,1 moreover, K may have infinitely many distinct extensions of a bounded degree. Thus function fields are inherently \looser" than number fields where the fact that [C: R] = 2 offers considerable restraint. As such, objects of classical number theory may have many different function field analogs. Classifying the different aspects of function field arithmetic is a lengthy job. One finds for instance that there are two distinct analogs of classical L-series. One analog comes from the L-series of Drinfeld modules etc., and is the one of interest here. The other analog arises from the L-series of modular forms on the Drinfeld rigid spaces, (see, for instance, [Go2]). -
Computation and the Riemann Hypothesis: Dedicated to Herman Te Riele on the Occasion of His Retirement
Computation and the Riemann Hypothesis: Dedicated to Herman te Riele on the occasion of his retirement Andrew Odlyzko School of Mathematics University of Minnesota [email protected] http://www.dtc.umn.edu/∼odlyzko December 2, 2011 Andrew Odlyzko ( School of Mathematics UniversityComputation of Minnesota and [email protected] Riemann Hypothesis: http://www.dtc.umn.edu/ Dedicated toDecember2,2011 Herman te∼ Rieodlyzkole on) the 1/15 occasion The mysteries of prime numbers: Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate. To convince ourselves, we have only to cast a glance at tables of primes (which some have constructed to values beyond 100,000) and we should perceive that there reigns neither order nor rule. Euler, 1751 Andrew Odlyzko ( School of Mathematics UniversityComputation of Minnesota and [email protected] Riemann Hypothesis: http://www.dtc.umn.edu/ Dedicated toDecember2,2011 Herman te∼ Rieodlyzkole on) the 2/15 occasion Herman te Riele’s contributions towards elucidating some of the mysteries of primes: numerical verifications of Riemann Hypothesis (RH) improved bounds in counterexamples to the π(x) < Li(x) conjecture disproof and improved lower bounds for Mertens conjecture improved bounds for de Bruijn – Newman constant ... Andrew Odlyzko ( School of Mathematics UniversityComputation of Minnesota and [email protected] Riemann Hypothesis: http://www.dtc.umn.edu/ Dedicated toDecember2,2011 -
Experimental Observations on the Riemann Hypothesis, and the Collatz Conjecture Chris King May 2009-Feb 2010 Mathematics Department, University of Auckland
Experimental Observations on the Riemann Hypothesis, and the Collatz Conjecture Chris King May 2009-Feb 2010 Mathematics Department, University of Auckland Abstract: This paper seeks to explore whether the Riemann hypothesis falls into a class of putatively unprovable mathematical conjectures, which arise as a result of unpredictable irregularity. It also seeks to provide an experimental basis to discover some of the mathematical enigmas surrounding these conjectures, by providing Matlab and C programs which the reader can use to explore and better understand these systems (see appendix 6). Fig 1: The Riemann functions (z) and (z) : absolute value in red, angle in green. The pole at z = 1 and the non- trivial zeros on x = showing in (z) as a peak and dimples. The trivial zeros are at the angle shifts at even integers on the negative real axis. The corresponding zeros of (z) show in the central foci of angle shift with the absolute value and angle reflecting the function’s symmetry between z and 1 - z. If there is an analytic reason why the zeros are on x = one would expect it to be a manifest property of the reflective symmetry of (z) . Introduction: The Riemann hypothesis1,2 remains the most challenging unsolved problem in mathematics at the beginning of the third millennium. The other two problems of similar status, Fermat’s last theorem3 and the Poincare conjecture4 have both succumbed to solutions by Andrew Wiles and Grigori Perelman in tours de force using a swathe of advanced techniques from diverse mathematical areas. Fermat’s last theorem states that no three integers a, b, c can satisfy an + bn = cn for n > 2. -
Complex Zeros of the Riemann Zeta Function Are on the Critical Line
December 2020 All Complex Zeros of the Riemann Zeta Function Are on the Critical Line: Two Proofs of the Riemann Hypothesis (°) Roberto Violi (*) Dedicated to the Riemann Hypothesis on the Occasion of its 160th Birthday (°) Keywords: Riemann Hypothesis; Riemann Zeta-Function; Dirichlet Eta-Function; Critical Strip; Zeta Zeros; Prime Number Theorem; Millennium Problems; Dirichlet Series; Generalized Riemann Hypothesis. Mathematics Subject Classification (2010): 11M26, 11M41. (*) Banca d’Italia, Financial Markets and Payment System Department, Rome, via Nazionale 91, Italy. E-Mail: [email protected]. The opinions of this article are those of the author and do not reflect in any way the views or policies of the Banca d’Italia or the Eurosystem of Central Banks. All errors are mine. Abstract In this study I present two independent proofs of the Riemann Hypothesis considered by many the greatest unsolved problem in mathematics. I find that the admissible domain of complex zeros of the Riemann Zeta-Function is the critical line given by 1 ℜ(s) = . The methods and results of this paper are based on well-known theorems 2 on the number of zeros for complex-valued functions (Jensen’s, Titchmarsh’s and Rouché’s theorem), with the Riemann Mapping Theorem acting as a bridge between the Unit Disk on the complex plane and the critical strip. By primarily relying on well- known theorems of complex analysis our approach makes this paper accessible to a relatively wide audience permitting a fast check of its validity. Both proofs do not use any functional equation of the Riemann Zeta-Function, except leveraging its implied symmetry for non-trivial zeros on the critical strip. -
Umbral Calculus and Cancellative Semigroup Algebras
Preprint funct-an/9704001, 1997 Umbral Calculus and Cancellative Semigroup Algebras∗ Vladimir V. Kisil April 1, 1997; Revised February 4, 2000 Dedicated to the memory of Gian-Carlo Rota Abstract We describe some connections between three different fields: com- binatorics (umbral calculus), functional analysis (linear functionals and operators) and harmonic analysis (convolutions on group-like struc- tures). Systematic usage of cancellative semigroup, their convolution algebras, and tokens between them provides a common language for description of objects from these three fields. Contents 1 Introduction 2 2 The Umbral Calculus 3 arXiv:funct-an/9704001v2 8 Feb 2000 2.1 Finite Operator Description ................... 3 2.2 Hopf Algebras Description .................... 4 2.3 The Semantic Description .................... 4 3 Cancellative Semigroups and Tokens 5 3.1 Cancellative Semigroups: Definition and Examples ....... 5 3.2 Tokens: Definition and Examples ................ 10 3.3 t-Transform ............................ 13 ∗Supported by grant 3GP03196 of the FWO-Vlaanderen (Fund of Scientific Research- Flanders), Scientific Research Network “Fundamental Methods and Technique in Mathe- matics”. 2000 Mathematics Subject Classification. Primary: 43A20; Secondary: 05A40, 20N++. Keywords and phrases. Cancellative semigroups, umbral calculus, harmonic analysis, token, convolution algebra, integral transform. 1 2 Vladimir V. Kisil 4 Shift Invariant Operators 16 4.1 Delta Families and Basic Distributions ............. 17 4.2 Generating Functions and Umbral Functionals ......... 22 4.3 Recurrence Operators and Generating Functions ........ 24 5 Models for the Umbral Calculus 28 5.1 Finite Operator Description: a Realization ........... 28 5.2 Hopf Algebra Description: a Realization ............ 28 5.3 The Semantic Description: a Realization ............ 29 Acknowledgments 30 It is a common occurrence in combinatorics for a sim- ple idea to have vast ramifications; the trick is to real- ize that many seemingly disparate phenomena fit un- der the same umbrella. -
Trivial Zeros of Zeta Functions and Prime Numbers
A Proof of the Riemann Hypothesis and Determination of the Relationship Between Non- Trivial Zeros of Zeta Functions and Prime Numbers Murad Ahmed Abu Amr MSc Degree in Physics, Mutah University [email protected] ABSTRACT This analysis which uses new mathematical methods aims at proving the Riemann hypothesis and figuring out an approximate base for imaginary non-trivial zeros of zeta function at very large numbers, in order to determine the path that those numbers would take. This analysis will prove that there is a relation links the non-trivial zeros of zeta with the prime numbers, as well as approximately pointing out the shape of this relationship, which is going to be a totally valid one at numbers approaching infinity. Keywords Riemann hypothesis; Zeta function; Non trivial zeros; Prime numbers . INTRODUCTION The Riemann hypothesis states that the real part of every non-trivial zeros of zeta function is always constant and equals ½. The mathematicians hope that the proof of this hypothesis to contribute in defining the locations of prime numbers on the number line. This proof will depend on a new mathematical analysis that is different from the other well-known methods; It`s a series of mathematical steps that concludes a set of mathematical relationships resulted from conducting mathematical analyses concerning Riemann zeta function and Dirichlet eta function after generalizing its form, as I will explain hereinafter, as well as identifying new mathematical functions which I will define its base later. I will resort to this different analysis because the known methods used in separating the arithmetic series to find its zeros cannot figure out the non-trivial zeros of zeta function; besides, I will explain the reason for its lack of success. -
8. Riemann's Plan for Proving the Prime Number Theorem
8. RIEMANN'S PLAN FOR PROVING THE PRIME NUMBER THEOREM 8.1. A method to accurately estimate the number of primes. Up to the middle of the nineteenth century, every approach to estimating ¼(x) = #fprimes · xg was relatively direct, based upon elementary number theory and combinatorial principles, or the theory of quadratic forms. In 1859, however, the great geometer Riemann took up the challenge of counting the primes in a very di®erent way. He wrote just one paper that could be called \number theory," but that one short memoir had an impact that has lasted nearly a century and a half, and its ideas have de¯ned the subject we now call analytic number theory. Riemann's memoir described a surprising approach to the problem, an approach using the theory of complex analysis, which was at that time still very much a developing sub- ject.1 This new approach of Riemann seemed to stray far away from the realm in which the original problem lived. However, it has two key features: ² it is a potentially practical way to settle the question once and for all; ² it makes predictions that are similar, though not identical, to the Gauss prediction. Indeed it even suggests a secondary term to compensate for the overcount we saw in the data in the table in section 2.10. Riemann's method is the basis of our main proof of the prime number theorem, and we shall spend this chapter giving a leisurely introduction to the key ideas in it. Let us begin by extracting the key prediction from Riemann's memoir and restating it in entirely elementary language: lcm[1; 2; 3; ¢ ¢ ¢ ; x] is about ex: Using data to test its accuracy we obtain: Nearest integer to x ln(lcm[1; 2; 3; ¢ ¢ ¢ ; x]) Di®erence 100 94 -6 1000 997 -3 10000 10013 13 100000 100052 57 1000000 999587 -413 Riemann's prediction can be expressed precisely and explicitly as p (8.1.1) j log(lcm[1; 2; ¢ ¢ ¢ ; x]) ¡ xj · 2 x(log x)2 for all x ¸ 100: 1Indeed, Riemann's memoir on this number-theoretic problem was a signi¯cant factor in the develop- ment of the theory of analytic functions, notably their global aspects. -
USC Phi Beta Kappa Visiting Scholar Program
The Phi Beta Kappa chapter of the University of South Carolina is pleased to present Dr. Andrew Odlyzko as the 2010 Visiting Schol- ar. Dr. Odlyzko will present two main talks, both in Amoco Hall of the Swearingen Center on the USC campus: 3:30 pm, Thursday, 25 February 2010 Technology manias: From railroads to the Internet and beyond A comparison of the Internet bubble with the British Rail- way Mania of the 1840s, the greatest technology mania in history, provides many tantalizing similarities as well as contrasts. Especially interesting is the presence in both cases of clear quantitative measures showing a priori that these manias were bound to fail financially, measures that were not considered by investors in their pursuit of “effortless riches.” In contrast to the Internet case, the Railway Mania had many vocal and influential skeptics, yet even then, these skeptics were deluded into issuing warnings that were often counterproductive in that they inflated the bubble further. The role of such imperfect information dissemination in these two manias leads to speculative projections on how future technology bubbles will develop. 2:30 pm, Friday, 26 February 2010 How to live and prosper with insecure cyberinfra- structure Mathematics has contributed immensely to the development of secure cryptosystems and protocols. Yet our networks are terribly insecure, and we are constantly threatened with the prospect of im- minent doom. Furthermore, even though such warnings have been common for the last two decades, the situation has not gotten any better. On the other hand, there have not been any great disasters either.