Robin Pemantle's Lecture Notes Cornell Summer School In

Robin Pemantle's Lecture Notes Cornell Summer School In

i Robin Pemantle’s Lecture Notes Cornell Summer School in Probability 6 July – 17 July, 2009 Contents 1 Fourier-Laplace integrals 1-1 1.1Laplace-typeintegralsinonevariable...................... 1-2 1.2Laplace-typeintegralsinseveralvariables................... 1-4 1.3Complexphases.................................. 1-7 2 Generating functions 2-1 2.1Formalpowerseriesandcombinatorialenumeration............. 2-1 2.2Applicationsinprobability........................... 2-5 2.3Coefficientextractionandtransfertheorems.................. 2-8 3LLDandLCLT 3-1 3.1Thesmoothpointtheorem........................... 3-2 3.2Locallargedeviations.............................. 3-4 3.3LocalCLT..................................... 3-7 3.4Smoothpointapplications............................ 3-8 5 Proofs 5-1 5.1Firstproof..................................... 5-1 5.2Secondproofandcanonicalrepresentations.................. 5-3 5.3Non-smoothpoints-asketchoffurtherresults................ 5-6 iii Bibliography [ABG70] M. Atiyah, R. Bott, and L. G˚arding. Lacunas for hyperbolic differential oper- ators with constant coefficients. Acta Mathematica, 124:109–189, 1970. [AGZV88] V. I. Arnol’d, S. M. Guse˘ın-Zade, and A. N. Varchenko. Singularities of Dif- ferentiable Maps. Vol. II. Birkh¨auser Boston Inc., Boston, MA, 1988. Mon- odromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous, Translation revised by the authors and James Montaldi. [AN72] K. Athreya and P. Ney. Branching Processes. Springer-Verlag, New York, 1972. [BBMD+02] Cyril Banderier, Mireille Bousquet-M´elou, Alain Denise, Philippe Flajolet, Dani`ele Gardy, and Dominique Gouyou-Beauchamps. Generating functions for generating trees. Discrete Math., 246(1-3):29–55, 2002. Formal power series and algebraic combinatorics (Barcelona, 1999). [BMP00] M. Bousquet-Melou and M. Petkovsek. Linear recurrences with constant co- efficients: the multivariate case. Discrete Math., 225:51–75, 2000. [BP08] Y. Baryshnikov and R. Pemantle. Tilings, groves and multiset permutations: asymptotics of rational generating functions whose pole set is a cone. arXiv, http://front.math.ucdavis.edu/0810.4898: 79, 2008. [CC86] J.T. Chayes and L. Chayes. Ornstein-zernike behavior for self-avoiding walks at all non-critical temperatures. Comm. Math. Phys., 105:221–238, 1986. [CEP96] Henry Cohn, Noam Elkies, and James Propp. Local statistics for random domino tilings of the Aztec diamond. Duke Math. J., 85(1):117–166, 1996. REFS-1 REFS-2 BIBLIOGRAPHY [DeV09] T. DeVries. A bivariate rational generating function of geometric interest. Preprint, page 20, 2009. [DSS09] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on Algebraic Statistics. Oberwolfach Seminars. Birk¨auser, Boston, 2009. [Fel68] W. Feller. An Introduction to Probability Theory and its Applications, vol. I. John Wiley & Sons, New York, third edition, 1968. [FO90] Philippe Flajolet and Andrew Odlyzko. Singularity analysis of generating functions. SIAM J. Discrete Math., 3(2):216–240, 1990. [FS08] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008. [GS64] I. Gelfand and G. Shilov. Generalized Functions, volume I: Properties and Operations. Academic Press, New York, 1964. [Hay56] W. Hayman. A generalisation of Stirling’s formula. J. Reine Angew. Math., 196:67–95, 1956. [H¨or90] Lars H¨ormander. An Introduction to Complex Analysis in Several Variables. North-Holland Publishing Co., Amsterdam, third edition, 1990. [HR17] G.H. Hardy and S. Ramanujan. Asymptotic formule for the distribution of integers of various types. Proceedings of the London Mathematical Society, 16:112–132, 1917. [JPS98] W. Jockusch, J. Propp, and P. Shor. Random domino tilings and the arctic circle theorem. arXiv, math.CO/9801068:37, 1998. [Law91] G Lawler. Intersections of Random Walks. Probability and its Applications. Birkh¨auser, Boston, 1991. [LL08] G. Lawler and V. Limic. Symmetric random walk. manuscript in preparation, 2008. [Lug09] M. Lugo. Profiles of permutations. Preprint, page 20, 2009. [Odl95] A. M. Odlyzko. Asymptotic enumeration methods. In Handbook of Combina- torics, pages 1063–1229. Elsevier, Amsterdam, 1995. BIBLIOGRAPHY REFS-3 [Pem09] R. Pemantle. Lecture notes on analytic combinatorics in several variables. Unpublished manuscript, page 210, 2009. [P´ol69] G. P´olya. On the number of certain lattice polygons. J. Comb. Theory, 6:102– 105, 1969. [PW02] R. Pemantle and M. Wilson. Asymptotics of multivariate sequences. I. Smooth points of the singular variety. J. Combin. Theory Ser. A, 97(1):129–161, 2002. [PW04] R. Pemantle and M. Wilson. Asymptotics of multivariate sequences, II. Mul- tiple points of the singular variety. Combin. Probab. Comput., 13:735–761, 2004. [PW08] R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions. SIAM Review, 50:199–272, 2008. [PW09] R. Pemantle and M. Wilson. Asymptotic expansions of oscillatory integrals with complex phase. preprint, page 17, 2009. [Rie49] M. Riesz. L’int´egrale de riemann-liouville et le probl`emedecauchy. Acta Mathematica, 81:1–223, 1949. [Roc66] R.T. Rockefellar. Convex analysis. Princeton University Press, Princeton, 1966. [Spi64] F. Spitzer. Principles of Random Walk. The university series in higher math- ematics. Van Nostrand, Princeton, 1964. [Sta97] Richard P. Stanley. Enumerative Combinatorics. Vol. 1. Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. [Ste93] Elias M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. [Var77] A. N. Varchenko. Newton polyhedra and estimation of oscillating integrals. Functional Anal. Appl., 10:175–196, 1977. REFS-4 BIBLIOGRAPHY [Wil94] Herbert S. Wilf. generatingfunctionology. Academic Press Inc., Boston, second edition, 1994..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us