Phytoplasmas and Phytoplasma Disease Management: How to Reduce Their Economic Impact

Total Page:16

File Type:pdf, Size:1020Kb

Phytoplasmas and Phytoplasma Disease Management: How to Reduce Their Economic Impact COST is supported by the EU ESF provides the COST Office RTD Framework Programme through a European Commission contract Food and Agriculture COST Action FA0807 Integrated Management of Phytoplasma Epidemics in Different Crop Systems Phytoplasmas and phytoplasma disease management: how to reduce their economic impact Edited by Assunta Bertaccini Food and Agriculture COST Action FA0807 Integrated Management of Phytoplasma Epidemics in Different Crop Systems P hytoplasmas and phytoplasma disease management: how to reduce their economic impact Publisher: IPWG - International Phytoplasmologist Working Group Edited by: Assunta Bertaccini Alma Mater Studiorum - University of Bologna, Italy ISBN 978-88-909922-0-9 © COST Offi ce, 2014 No permission to reproduce or utilise the contents of this book by any means is necessary, other than in the case of images, diagrams or other material from other copyright holders. In such cases, permission of the copyright holders is required. Neither the COST Offi ce nor any person acting on its behalf is responsible for the use which might be made of the information contained in this publication. The COST Offi ce is not responsible for the external websites referred to in this publication. Printed: 2014, Bologna, Italy Graphic: F. Montanari Cover: Vincent van Gogh, Wheat Field with Cypresses, 1889, The Metropolitan Museum of Art, Purchase, The Annenberg Foundation Gift, 1993, www.metmuseum.org. Content Introduction 7 Phytoplasmas and COST Action FA0807 A. Bertaccini 15 The COST action’s FA0807 web site: dissemination of phytoplasma-related knowledge M. Verbeek Chapter 1 The phytoplasmas and phytoplasma vectors in COST FA0807 Countries 23 Phytoplasmas and phytoplasma vectors in Denmark, Finland, Lithuania and Norway M. Nicolaisen 26 Fruit tree phytoplasma diseases and vectors in Belgium, Netherlands, and United Kingdom G. Peusens, P. Lepoivre, S. Steyer, M. Dickinson, M. Verbeek, T. Beliën 29 Phytoplasma diseases and their vectors in Czech Republic, Hungary and Poland J. Fránová, J. Přibylová, M. Navrátil, D. Šafářová, I. Ember, M. Kölber, S. Süle, M. Cieślińska, M. Kamińska 36 Presence and distribution of phytoplasma diseases and vectors in Germany and Switzerland: current state of the art B. Jarausch, M. Maixner, P. Kehrli, S. Schaerer 41 Recent insight on phytoplasma diseases and vectors in France X. Foissac 47 Overview of the phytoplasma and vector research in Austria, Croatia and Slovenia D. Škorić, M. Riedle-Bauer, M. Dermastia 54 Overview of the phytoplasma and vector research in Bosnia and Herzegovina, Bulgaria, FYR Macedonia, Romania and Serbia B. Duduk 58 Review of occurrence of phytoplasmas in Spain, Portugal and Malta E. Torres, A. Batlle, A. Laviña, J. Bech, A. Bertaccini, E. Sousa 62 Phytoplasmas and phytoplasma vectors in Greece, Israel, Italy and Turkey P.A. Bianco Chapter 2 The phytoplasmas and phytoplasma vectors in COST FA0807 international Countries 67 Relevant phytoplasma diseases in COST FA0807 international Countries A. Bertaccini 71 Almond witches’ broom phytoplasma: disease monitoring and preliminary control measures in Lebanon M. Molino Lova, Y. Abou-Jawdah, E. Choueiri, M. Beyrouthy, R. Fakhr, P.A. Bianco, A. Alma, H. Sobh, M. Jawhari, C. Mortada, P. Najjar, P. Casati, F. Quaglino, L. Picciau, R. Tedeschi, S. Khalil, R. Maacaroun, C. Makfoud, L. Haydar, R. Al Achi 76 ‘Candidatus Phytoplasma solani’ associated with grapevine “bois noir” disease in Jordan N.M. Salem, F. Quaglino, A. Abdeen, P. Casati, D. Bulgari, A. Alma, P.A. Bianco 79 Potential vectors of ‘Candidatus Phytoplasma phoenicium’ in Lebanon L. Picciau, R. Tedeschi, F. Quaglino, M. Jawhari, Y. Abou-Jawdah, M. Molino Lova, P. Casati, E. Choueiri, H. Abdul-Nour, P.A. Bianco, A. Alma 82 Advances in knowledge about phytoplasma diseases in Argentina L. Conci, A. Saavedra Pons, F. Guzmán; F. Fernández, E. Galdeano, T. Pérez Grosso, L. Torres, N. Meneguzzi 90 Phytoplasma diseases in trees of Bogotá, Colombia: a serious risk for urban trees and crops L. Franco-Lara, L.M. Perilla Henao 101 Coffee crispiness and nogal cafetero witches’ broom associated with ‘Candidatus Phytoplasma pruni’-related strains in Colombia: multilocus gene characterization J.F. Mejia, S. Paltrinieri, E. Rincon, C.M. Ospina, A. Gaitan, J.M. Pardo, E. Alvarez, A. Bertaccini Chapter 3 Diseases and insect vectors 111 Diseases and insect vectors B. Jarausch, P. Weintraub, N. Sauvion, M. Maixner, X. Foissac 122 Molecular characterization of `Candidatus Phytoplasma mali` and `Candidatus Phytoplasma pyri` strains from Romania C. Chireceanu, M. Cieślińska 130 Fruit tree phytoplasmas and their possible insect vectors in Turkey K. Çağlayan, M. Gazel, Ç.U. Serçe, K. Kaya, F.C. Cengiz 137 Phytoplasma infections in Rhododendron hybridum J. Přibylová, J. Špak, J. Fránová 143 Maize redness disease: current situation in Bosnia and Herzegovina B. Lolić, G. Perković, D. Delić 151 Molecular diversity of phytoplasmas infecting Rubus spp. plants in Poland M. Cieślińska, J. Wójcik-Seliga, B. Kowalik 159 Identification of phytoplasmas associated with Rubus spp. as prerequisite for their successful elimination R. Ramkat, M. Ruinelli, F. Maghuly, L. Schoder, M. Laimer 167 Fruit tree phytoplasmas and their vectors in pome fruit growing in Belgium: research efforts G. Peusens, C. Duchêne, P. Lepoivre, S. Steyer, T. Beliën Chapter 4 Molecular tools for phytoplasma detection and identifi cation in COST FA0807 179 Molecular tools in COST FA0807 Action J. Fránová, A. Bertaccini, B. Duduk 185 DNA barcoding of phytoplasmas: a tool for their fast identification M. Nicolaisen, O. Makarova, S. Paltrinieri, A. Bertaccini, N. Contaldo 190 Reliable detection of European stone fruit yellows phytoplasma in apricot and peach trees J. Polák, J. Salava, J. Svoboda, P. Komínek Chapter 5 Management of phytoplasma-associated diseases 199 Management of phytoplasma-associated diseases W. Jarausch, E. Torres 209 “Stolbur” phytoplasma strains in Austria and their association with grapevine, bindweed, stinging nettle and Hyalesthes obsoletus G. Brader, A. Aryan, J Mörtel, M. Pastar, M. Riedle-Bauer 215 Occurrence of Hyalesthes obsoletus and “stolbur” phytoplasma strains in grapevine and host plants in Spain A. Batlle, J. Sabaté, A. Laviña 218 Mark, release and recapture experiments tracking the dispersal of Cacopsylla pruni (Hemiptera: Psyllidae), the vector of European stone fruit yellows in two model apricot orchards M. Riedle-Bauer, C. Paleskić, K. Bachinger, J. Mörtel, C. Engel, M. Kickenweiz, L. Wurm, L. Czipin, G. Brader 226 Isolation of potential biocontrol agents of ‘Candidatus Phytoplasma mali’ D. Bulgari, P. Casati, F. Quaglino, P.A. Bianco 235 The role of vineyards not treated with insecticides on Scaphoideus titanus spreading N. Mori, F. Pavan, A. Pozzebon, D. Fornasiero, C. Peruffo, C. Duso 239 The role of grapevine arbours as overlooked sources of “flavescence dorée” and Scaphoideus titanus in southeastern vineyards of Austria G. Strauss, H. Reisenzein, R. Steffek, M. Schwarz 246 Scaphoideus titanus and ‘’flavescence dorée’’ disease in Portugal E. Sousa, P. Carvalho, C. Mimoso, K. Teixeira, F. Cardoso, A. Pereira 250 Current knowledge about recovery from phytoplasma diseases R. Musetti, P. Ermacora, M. Martini, N. Loi, R. Osler Chapter 6 Genomes and their expression in COST FA0807 261 From genomics to the characterization of virulence mechanisms of phytoplasmas S.A. Hogenhout 263 Complete genomes and deduced metabolism of acholeplasmas in comparison to members of ‘Candidatus Phytoplasma’ M. Kube, C. Siewert, A.M. Migdoll, B. Duduk, J. Mitrović, S. Holz, R. Rabus, R. Reinhardt, E. Seemüller, C. Büttner 272 In vitro expression of phytoplasma immunodominant membrane proteins L. Galetto, M. Rashidi, A. Yamchi, F. Veratti, C. Marzachì 280 Identification and molecular features of suppressive strains of ‘Candidatus Phytoplasma mali’ and their effect on disease development E. Seemüller, W. Jelkmann, B. Schneider 287 Index of authors COST Action FA0807 Integrated Management of Phytoplasma Epidemics in Different Crop Systems Chair Assunta Bertaccini (Italy) Vice-Chair Mogens Nicolaisen (Denmark) Coordinators Bojan Duduk (Serbia), Jana Franova (Czech Republic) - WG1 Phyllis Weintraub (Israel), Barbara Jarausch (Germany) - WG2 Wolfgang Jarausch (Germany), Ester Torres (Spain) - WG3 Saskia Hogenhout (United Kingdom), Xavier Foissac (France) - WG4 STSM Chair Matthew Dickinson (United Kingdom) Webmaster Martin Verbeek (The Netherlands) Secretary Dijana Skoric (Croatia) Introduction Phytoplasmas and COST Action FA0807 Assunta Bertaccini DipSA, Plant Pathology, Alma Mater Studiorum, University of Bologna, Italy; assunta.bertaccini@ unibo.it Abstract The total number of participants involved in the Action was 367 of which 60% of females and 32% of early stage researchers. Total publications were about 800 (list available at http://www.costphytoplasma.ipwgnet.org/publications.htm). Innovative knowledge resulting from COST networking through the Action The comparison of diagnostic protocol for phytoplasma identification towards the achievement of harmonized protocols for rapid and reliable detection of fruit trees and grapevine phytoplasma-associated diseases, and the report of phytoplasma molecular diversity in diverse Countries, in different host plant and vector species, were obtained. Identification of molecular markers to follow insect vector population distribution, particularly for fruit tree phytoplasmas, was also achieved. A network for insect vector identification to increase the knowledge
Recommended publications
  • 1 2019 Uzbekistan Memo to File (MTF) and IEE Amendment for USAID-Funded Agriculture Value Chains (AVC) Programmatic PERSUAP Face
    2019 Uzbekistan Memo to File (MTF) and IEE Amendment for USAID-funded Agriculture Value Chains (AVC) Programmatic PERSUAP Face Sheet MTF Information TO: Will Gibson, BEO THROUGH: Nina Kavetskaya, MEO Andrei Barannik, REA CC: MEO Tracking FROM: Bahtiyor Mirzabaev, COR SUBJECT: 2019 Uzbekistan P-PERSUAP analysis of all 2018 Uzbekistan-registered pesticides and use sectors for current EPA active registration and restriction data. Also, this study includes new sectors, crops, pests, diseases, weeds updates and new preventive IPM information for each. ISSUE FOR DECISION: You are requested to approve the new 2019 Uzbekistan P-PERSUAP, which analyzes all 2018 Uzbek registered pesticides, and adds links to MSDSs for “same or similar” pesticide products. IEE Amendment and P-PERSUAP Face Sheet Information PROGRAM/ACTIVITY DATA Activity Location:/Country Code Uzbekistan/Central Asia Activity Name: All USAID/CA/Uzbekistan programs Activity Number: Multiple Life-of-Activity Funding: $17,039,595 (Agricultural Value Chains, AVC) Period Covered: Present date to 2020 IEE and PERSUAP Prepared by: Alan Schroeder, PhD, MBA; Sunnat Jalolov, MSc Funding Period: FY2015 - 2020 IEE Amendments (Y/N): YES – amends Asia 15-047 and all current USAID/CA and USAID/CA/Uzbekistan IEEs covering activities with potential pesticide use in Uzbekistan Dates P-PERSUAP Prepared, Reviewed and Edited: April to December 2018 1 SUMMARY This Initial Environmental Examination (IEE) for the 2019 USAID/CA/Uzbekistan Programmatic Pesticide Evaluation Report Safer Use Action Plan (PERSUAP) addresses the requirements of 22 CFR 216.3(b) (“Pesticide Procedures”) regarding the assistance in procurement or use or both, without restriction, of pesticides on all USAID/CA/Uzbekistan programs.
    [Show full text]
  • Classificatie Van Planten – Nieuwe Inzichten En Gevolgen Voor De Praktijk
    B268_dendro_bin 03-11-2009 10:32 Pagina 4 Classificatie van planten – nieuwe inzichten en gevolgen voor de praktijk Ir. M.H.A. Hoffman Er zijn ongeveer 300.000 verschillende (hogere) plantensoorten, die onderling veel of weinig op elkaar lijken. Vroeger werden alle planten- soorten afzonderlijk benaamd, en was niet duidelijk hoe deze soorten ver- want waren. Tegenwoordig worden soorten conform het systeem van Lin- naeus ingedeeld in geslachten. Soorten die sterk verwant zijn aan elkaar hebben dezelfde geslachtsnaam. Geslachten worden op hun beurt weer ingedeeld in families en die op hun beurt weer in ordes, enzovoort. Op deze manier kent het plantenrijk een hiërarchisch indelingsysteem, met verwantschap als basis. Sterke verwantschap is meestal ook zicht- baar aan de uiterlijke gelijkenis. Soorten die veel op elkaar lijken en verwant zijn zitten in dezelfde groep.Verre verwanten zitten ver uit elkaar in het systeem. Om een plant goed te kunnen benamen, moet dus eerst uitgezocht worden aan welke andere soorten deze verwant is. Tot voor kort werd de gelijkenis van planten zen. Deze nieuwe ontwikkeling is van grote voornamelijk bepaald aan uiterlijke kenmerken invloed op de taxonomie en op het classificatie- van bijvoorbeeld bloem en blad. De afgelopen systeem van het plantenrijk. Dit heeft bijvoor- decennia kwamen daar al aanvullende criteria beeld invloed op de familie-indeling en de plaats zoals houtanatomie, pollenmorfologie, chemi- van de familie in het systeem. Maar ook op sche inhoudsstoffen en chromosoomaantallen geslachts- en soortniveau zijn er de nodige ver- bij. De afgelopen jaren hebben DNA-technie- schuivingen. Dit artikel gaat in op de ontstaans- ken een grote vlucht genomen.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • Metatranscriptomic Analysis of Community Structure And
    School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support.
    [Show full text]
  • Acholeplasma Florum, a New Species Isolated from Plants? R
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1984, p. 11-15 Vol. 34, No. 1 0020-7713/84/010011-05$02.OO/O Copyright 0 1984, International Union of Microbiological Societies Acholeplasma florum, a New Species Isolated from Plants? R. E. McCOY,l* H. G. BASHAM,' J. G. TULLY,* D. L. ROSE,2 P. CARLE,3 AND J. M. BOVE3 University of Florida Agricultural Research and Education Center, Fort Lauderdale, Florida 33314'; Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 21 70i2;and lnstitut National de la Recherche Agronomique, Pont de la Maye 33140, France3 Three acholeplasmas isolated from floral surfaces of healthy plants in Florida were found to be similar in their biochemical and serological properties. These organisms did not require serum or cholesterol for growth, although addition of some supplementary fatty acids (as represented by Tween 80) was necessary for growth to occur in serum-free medium. The three strains possessed biochemical properties typical of the Acholeplasmataceae and were distinguished from the nine previously recognized Acholeplasma species by serological and deoxyribopucleic acid-deoxyribonucleic acid hybridization techniques. The genome molec- ular weight of the three Acholeplasma strains was lo9, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 27 to 28 mol%. On the basis of these results and other morphological, biological, and serological properties, we propose that these organisms represent a new species, Acholeplasmaflorurn. Strain L1 (= ATCC 33453) is the type strain. Plant surfaces, particularly flowers, have recently been Media and cultivation procedures. Isolates were routinely proven to be fertile sites for isolation of members of the grown in MC broth or in the serum fraction medium de- Mycoplasrnatales (5, 11-13, 26).
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • 'Candidatus Phytoplasma Solani' (Quaglino Et Al., 2013)
    ‘Candidatus Phytoplasma solani’ (Quaglino et al., 2013) Synonyms Phytoplasma solani Common Name(s) Disease: Bois noir, blackwood disease of grapevine, maize redness, stolbur Phytoplasma: CaPsol, maize redness phytoplasma, potato stolbur phytoplasma, stolbur phytoplasma, tomato stolbur phytoplasma Figure 1: A ‘dornfelder’ grape cultivar Type of Pest infected with ‘Candidatus Phytoplasma Phytoplasma solani’. Courtesy of Dr. Michael Maixner, Julius Kühn-Institut (JKI). Taxonomic Position Class: Mollicutes, Order: Acholeplasmatales, Family: Acholeplasmataceae Genus: ‘Candidatus Phytoplasma’ Reason for Inclusion in Manual OPIS A pest list, CAPS community suggestion, known host range and distribution have both expanded; 2016 AHP listing. Background Information Phytoplasmas, formerly known as mycoplasma-like organisms (MLOs), are pleomorphic, cell wall-less bacteria with small genomes (530 to 1350 kbp) of low G + C content (23-29%). They belong to the class Mollicutes and are the putative causal agents of yellows diseases that affect at least 1,000 plant species worldwide (McCoy et al., 1989; Seemüller et al., 2002). These minute, endocellular prokaryotes colonize the phloem of their infected plant hosts as well as various tissues and organs of their respective insect vectors. Phytoplasmas are transmitted to plants during feeding activity by their vectors, primarily leafhoppers, planthoppers, and psyllids (IRPCM, 2004; Weintraub and Beanland, 2006). Although phytoplasmas cannot be routinely grown by laboratory culture in cell free media, they may be observed in infected plant or insect tissues by use of electron microscopy or detected by molecular assays incorporating antibodies or nucleic acids. Since biological and phenotypic properties in pure culture are unavailable as aids in their identification, analysis of 16S rRNA genes has been adopted instead as the major basis for phytoplasma taxonomy.
    [Show full text]
  • Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em New faunistic data on the cave-dwelling spiders in the Balkan Peninsula (Araneae) MARIA V. NAUMOVA1, STOYAN P. LAZAROV2, BOYAN P. PETROV2, CHRISTO D. DELTSHEV2 1Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected] 2National Museum of Natural History, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected], [email protected], [email protected] Corresponding author: Christo Deltshev Received 15 October 2016 │ Accepted 7 November 2016 │ Published online 9 November 2016. Abstract The contribution summarizes previously unpublished data and adds records of newly collected cave-dwelling spiders from the Balkan Peninsula. New data on the distribution of 91 species from 16 families, found in 157 (27 newly established) underground sites (caves and artificial galleries) are reported due to 337 original records. Twelve species are new to the spider fauna of the caves of the Balkan Peninsula. The species Histopona palaeolithica (Brignoli, 1971) and Hoplopholcus longipes (Spassky, 1934) are reported for the first time for the territory of Balkan Peninsula, Centromerus cavernarum (L. Koch, 1872), Diplocephalus foraminifer (O.P.-Cambridge, 1875) and Lepthyphantes notabilis Kulczyński, 1887 are new for the fauna of Bosnia and Herzegovina, Cataleptoneta detriticola Deltshev & Li, 2013 is new for the fauna of Greece, Asthenargus bracianus Miller, 1938 and Centromerus europaeus (Simon, 1911) are new for the fauna of Montenegro and Syedra gracilis (Menge, 1869) is new for the fauna of Turkey.
    [Show full text]
  • Genomic Islands in Mycoplasmas
    G C A T T A C G G C A T genes Review Genomic Islands in Mycoplasmas Christine Citti * , Eric Baranowski * , Emilie Dordet-Frisoni, Marion Faucher and Laurent-Xavier Nouvel Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; [email protected] (E.D.-F.); [email protected] (M.F.); [email protected] (L.-X.N.) * Correspondence: [email protected] (C.C.); [email protected] (E.B.) Received: 30 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
    [Show full text]
  • 'Ca. Phytoplasma Fraxini' Y
    248 UNIVERSIDAD MILITAR NUEVA GRANADA ESPECIES ARBÓREAS DE LAS FAMILIAS EUPHORBIACEAE, PITTOSPORACEAE Y SALICACEAE SON INFECTADAS POR ‘CA. PHYTOPLASMA FRAXINI’ Y ‘CA. PHYTOPLASMA ASTERIS’ EN INFECCIONES MIXTAS EN BOGOTÁ, COLOMBIA Fecha de recepción: 4 de octubre de 2013 • Fecha de aceptación: 15 de noviembre de 2013 TREE SPECIES OF EUPHORBIACEAE, PITTOSPORACEAE AND SALICACEAE FAMILIES ARE INFECTED BY ‘CA. PHYTOPLASMA FRAXINI’ AND ‘CA. PHYTOPLASMA ASTERIS’ IN MIXED INFECTIONS IN BOGOTA, COLOMBIA Laura M. Perilla-Henao1 • Liliana Franco-Lara2,3 RESUMEN La presencia de fitoplasmas del grupo 16SrI (‘Ca. Phytoplasma asteris’) fue reportada en Croton spp. (Eu- phorbiaceae), Pittosporum undulatum (Pittosporaceae) y Populus nigra (Salicaceae), en Bogotá. En este traba- jo se reporta la existencia adicional de fitoplasmas del grupo 16SrVII‘Ca. Phytoplasma fraxini’ en estas mismas especies de árboles ornamentales, por técnicas moleculares como PCR anidada, RFLP y secuenciación del gen 16SrRNA. Los resultados muestran la existencia de un complejo de fitoplasmas de los grupos 16SrI y 16SrVII que se asocian con síntomas como deformación general de la corona, ramas en copo, amarillamiento, elonga- ción anormal de brotes apicales, escobas de bruja y rebrotación epicórmica que afectan el estado de sanidad de los árboles. En diciembre de 2013 la prevalencia sintomática en Croton spp., P. undulatum y P. nigra y se estimó en 36%, 93% y 85% respectivamente. Este trabajo presenta evidencia de que plantas de familias dife- rentes a Oleaceae que son susceptibles a fitoplasmas del grupo 16SrVII y que en este caso se encuentran en infecciones mixtas con fitoplasmas del grupo 16SrI. Se presentan evidencias de una enfermedad emergente de alta prevalencia en estas especies de árboles han pasado desapercibidas hasta la fecha, pero suponen un riesgo para la supervivencia de los árboles urbanos en Bogotá.
    [Show full text]
  • An Integrated Study on Microbial Community in Anaerobic Digestion Systems
    An Integrated Study on Microbial Community in Anaerobic Digestion Systems DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yueh-Fen Li Graduate Program in Environmental Science The Ohio State University 2013 Dissertation Committee: Dr. Zhongtang Yu, Advisor Dr. Brian Ahmer Dr. Richard Dick Dr. Olli Tuovinen Copyrighted by Yueh-Fen Li 2013 Abstract Anaerobic digestion (AD) is an attractive microbiological technology for both waste treatment and energy production. Microorganisms are the driving force for the whole transformation process in anaerobic digesters. However, the microbial community underpinning the AD process remains poorly understood, especially with respect to community composition and dynamics in response to variations in feedstocks and operations. The overall objective was to better understand the microbiology driving anaerobic digestion processes by systematically investigating the diversity, composition and succession of microbial communities, both bacterial and archaeal, in anaerobic digesters of different designs, fed different feedstocks, and operated under different conditions. The first two studies focused on propionate-degrading bacteria with an emphasis on syntrophic propionate-oxidizing bacteria. Propionate is one of the most important intermediates and has great influence on AD stability in AD systems because it is inhibitory to methanogens and it can only be metabolized through syntrophic propionate- oxidizing acetogenesis under methanogenic conditions. In the first study (chapter 3), primers specific to the propionate-CoA transferase gene (pct) were designed and used to construct clone libraries, which were sequenced and analyzed to investigate the diversity and distribution of propionate-utilizing bacteria present in the granular and the liquid portions of samples collected from four digesters of different designs, fed different ii feedstocks, and operated at different temperatures.
    [Show full text]
  • 2010 Season Summary Index NEW WOFTHE~ Zone 1: Yukon Territory
    2010 Season Summary Index NEW WOFTHE~ Zone 1: Yukon Territory ........................................................................................... 3 Alaska ... ........................................ ............................................................... 3 LEPIDOPTERISTS Zone 2: British Columbia .................................................... ........................ ............ 6 Idaho .. ... ....................................... ................................................................ 6 Oregon ........ ... .... ........................ .. .. ............................................................ 10 SOCIETY Volume 53 Supplement Sl Washington ................................................................................................ 14 Zone 3: Arizona ............................................................ .................................... ...... 19 The Lepidopterists' Society is a non-profo California ............... ................................................. .............. .. ................... 2 2 educational and scientific organization. The Nevada ..................................................................... ................................ 28 object of the Society, which was formed in Zone 4: Colorado ................................ ... ............... ... ...... ......................................... 2 9 May 1947 and formally constituted in De­ Montana .................................................................................................... 51 cember
    [Show full text]