Cold Agglutinin Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: a Review
Journal of Clinical Medicine Review The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: A Review Felix Scholkmann 1,2,*, Tanja Restin 2, Marco Ferrari 3 and Valentina Quaresima 3 1 Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland 2 Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; [email protected] 3 Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; [email protected] (M.F.); [email protected] (V.Q.) * Correspondence: [email protected]; Tel.: +41-4-4255-9326 Abstract: Following the outbreak of a novel coronavirus (SARS-CoV-2) associated with pneumonia in China (Corona Virus Disease 2019, COVID-19) at the end of 2019, the world is currently facing a global pandemic of infections with SARS-CoV-2 and cases of COVID-19. Since severely ill patients often show elevated methemoglobin (MetHb) and carboxyhemoglobin (COHb) concentrations in their blood as a marker of disease severity, we aimed to summarize the currently available published study results (case reports and cross-sectional studies) on MetHb and COHb concentrations in the blood of COVID-19 patients. To this end, a systematic literature research was performed. For the case of MetHb, seven publications were identified (five case reports and two cross-sectional studies), and for the case of COHb, three studies were found (two cross-sectional studies and one case report). The findings reported in the publications show that an increase in MetHb and COHb can happen in COVID-19 patients, especially in critically ill ones, and that MetHb and COHb can increase to dangerously high levels during the course of the disease in some patients. -
Simultaneous Pure Red Cell Aplasia and Auto-Immune Hemolytic Anemia in a Previously Healthy Infant
Simultaneous Pure Red Cell Aplasia and Auto-immune Hemolytic Anemia in a Previously Healthy Infant Robert P. Sanders, MD July 16, 2002 Case Presentation Patient Z.H. • Previously Healthy 7 month old WM • Presented to local ER 6/30 with 1 wk of decreased activity and appetite, low grade temp, 2 day h/o pallor. • Noted to have severe anemia, transferred to LeBonheur • Review of Systems – ? Single episode of dark urine – 4 yo sister diagnosed with Fifth disease 1 wk prior to onset of symptoms, cousin later also diagnosed with Fifth disease – Otherwise negative ROS •PMH – Term, no complications – Normal Newborn Screen – Hospitalized 12/01 with RSV • Medications - None • Allergies - NKDA • FH - Both parents have Hepatitis C (pt negative) • SH - Lives with Mom, 4 yo sister • Development Normal Physical Exam • 37.2 167 33 84/19 9.3kg • Gen - Alert, pale, sl yellow skin tone, NAD •HEENT -No scleral icterus • CHEST - Clear • CV - RRR, II/VI SEM at LLSB • ABD - Soft, BS+, no HSM • SKIN - No Rash • NEURO - No Focal Deficits Labs •CBC – WBC 20,400 • 58% PMN 37% Lymph 4% Mono 1 % Eo – Hgb 3.4 • MCV 75 MCHC 38.0 MCH 28.4 – Platelets 409,000 • Retic 0.5% • Smear - Sl anisocytosis, Sl hypochromia, Mod microcytes, Sl toxic granulation • G6PD Assay 16.6 U/g Hb (nl 4.6-13.5) • DAT, Broad Spectrum Positive – IgG negative – C3b, C3d weakly positive • Chemistries – Total Bili 2.0 – Uric Acid 4.8 –LDH 949 • Urinalysis Negative, Urobilinogen 0.2 • Blood and Urine cultures negative What is your differential diagnosis? Differential Diagnosis • Transient Erythroblastopenia of Childhood • Diamond-Blackfan syndrome • Underlying red cell disorder with Parvovirus induced Transient Aplastic Crisis • Immunohemolytic anemia with reticulocytopenia Hospital Course • Admitted to ICU for observation, transferred to floor 7/1. -
Aplastic Crisis Caused by Parvovirus B19 in an Adult Patient with Sickle-Cell Disease
Revista da Sociedade Brasileira de Medicina Tropical RELATO DE CASO 33(5):477-481, set-out, 2000. Aplastic crisis caused by parvovirus B19 in an adult patient with sickle-cell disease Crise aplástica por parvovírus B19 em um paciente adulto com doença falciforme Sérgio Setúbal1, Adelmo H.D. Gabriel2, Jussara P. Nascimento3 e Solange A. Oliveira1 Abstract We describe a case of aplastic crisis caused by parvovirus B19 in an adult sickle-cell patient presenting with paleness, tiredness, fainting and dyspnea. The absence of reticulocytes lead to the diagnosis. Anti-B19 IgM and IgG were detected. Reticulocytopenia in patients with hereditary hemolytic anemia suggests B19 infection. Key-words: Human parvovirus B19. Sickle-cell disease. Transient aplastic crisis. Reticulocytopenia. Resumo Descreve-se um caso de crise aplástica devida ao parvovírus B19 num paciente adulto, manifestando-se por palidez, cansaço, lipotímias e dispnéia. A ausência de reticulócitos chamou a atenção para o diagnóstico. Detectaram-se IgM e IgG anti-B19. Reticulocitopenia em pacientes com anemia hemolítica hereditária sugere infecção por B19. Palavras-chaves: Parvovírus B19. Doença falciforme. Crise aplástica transitória. Reticulocitopenia. Parvovirus B19 is the only pathogenic and the virus was labeled serum-parvovirus-like parvovirus in humans. It is a DNA virus that infects particle. Retesting the sera from their panels, which and destroys erythroid cell progenitors. Cossart and were obtained mainly from British adults, Cossart coworkers3 discovered parvovirus B19 fortuitously and coworkers demonstrated that 30% of them in 1974, when they were trying to detect HBsAg had antibodies to the virus. in panels of human sera. Unexpectedly, the serum The virus was identified again two years later numbered 19 in panel B showed an anomalous in two blood donors12, and six years later in two precipitin line in a counter immunoelectrophoresis British soldiers returning from Africa15, all of which (CIE) employing another human immune serum. -
Blood Bank I D
The Osler Institute Blood Bank I D. Joe Chaffin, MD Bonfils Blood Center, Denver, CO The Fun Just Never Ends… A. Blood Bank I • Blood Groups B. Blood Bank II • Blood Donation and Autologous Blood • Pretransfusion Testing C. Blood Bank III • Component Therapy D. Blood Bank IV • Transfusion Complications * Noninfectious (Transfusion Reactions) * Infectious (Transfusion-transmitted Diseases) E. Blood Bank V (not discussed today but available at www.bbguy.org) • Hematopoietic Progenitor Cell Transplantation F. Blood Bank Practical • Management of specific clinical situations • Calculations, Antibody ID and no-pressure sample questions Blood Bank I Blood Groups I. Basic Antigen-Antibody Testing A. Basic Red Cell-Antibody Interactions 1. Agglutination a. Clumping of red cells due to antibody coating b. Main reaction we look for in Blood Banking c. Two stages: 1) Coating of cells (“sensitization”) a) Affected by antibody specificity, electrostatic RBC charge, temperature, amounts of antigen and antibody b) Low Ionic Strength Saline (LISS) decreases repulsive charges between RBCs; tends to enhance cold antibodies and autoantibodies c) Polyethylene glycol (PEG) excludes H2O, tends to enhance warm antibodies and autoantibodies. 2) Formation of bridges a) Lattice structure formed by antibodies and RBCs b) IgG isn’t good at this; one antibody arm must attach to one cell and other arm to the other cell. c) IgM is better because of its pentameric structure. P}Chaffin (12/28/11) Blood Bank I page 1 Pathology Review Course 2. Hemolysis a. Direct lysis of a red cell due to antibody coating b. Uncommon, but equal to agglutination. 1) Requires complement fixation 2) IgM antibodies do this better than IgG. -
Dr. Thomas Kickler's Papers
1. Rock C, Wong BC, Dionne K, et al. Pseudo-outbreak of Sphingomonas and Methylobacterium sp. Associated with Contamination of Heparin-Saline Solution Syringes Used During Bone Marrow Aspiration. Infection control and hospital epidemiology 2016;37:116-7. 2. Lai H, Moore R, Celentano DD, et al. HIV Infection Itself May Not Be Associated With Subclinical Coronary Artery Disease Among African Americans Without Cardiovascular Symptoms. Journal of the American Heart Association 2016;4:e002529. 3. Kakouros N, Nazarian SM, Stadler PB, Kickler TS, Rade JJ. Risk Factors for Nonplatelet Thromboxane Generation After Coronary Artery Bypass Graft Surgery. Journal of the American Heart Association 2016;4:e002615. 4. Streiff MB, Ye X, Kickler TS, et al. A prospective multicenter study of venous thromboembolism in patients with newly-diagnosed high-grade glioma: hazard rate and risk factors. Journal of neuro- oncology 2015;124:299-305. 5. Lai H, Stitzer M, Treisman G, et al. Cocaine Abstinence and Reduced Use Associated With Lowered Marker of Endothelial Dysfunction in African Americans: A Preliminary Study. Journal of addiction medicine 2015;9:331-9. 6. Gavriilaki E, Yuan X, Ye Z, et al. Modified Ham test for atypical hemolytic uremic syndrome. Blood 2015;125:3637-46. 7. Huang X, Shah S, Wang J, et al. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors. Molecular therapy : the journal of the American Society of Gene Therapy 2014;22:451-63. 8. Abt NB, Streiff MB, Gocke CB, Kickler TS, Lanzkron SM. Idiopathic Acquired Hemophilia A with Undetectable Factor VIII Inhibitor. -
Acoi Board Review 2019 Text
CHERYL KOVALSKI, DO FACOI NO DISCLOSURES ACOI BOARD REVIEW 2019 TEXT ANEMIA ‣ Hemoglobin <13 grams or ‣ Hematocrit<39% TEXT ANEMIA MCV RETICULOCYTE COUNT Corrected retic ct = hematocrit/45 x retic % (45 considered normal hematocrit) >2%: blood loss or hemolysis <2%: hypoproliferative process TEXT ANEMIA ‣ MICROCYTIC ‣ Obtain and interpret iron studies ‣ Serum iron ‣ Total iron binding capacity (TIBC) ‣ Transferrin saturation ‣ Ferritin-correlates with total iron stores ‣ can be normal or increased if co-existent inflammation TEXT IRON DEFICIENCY ‣ Most common nutritional problem in the world ‣ Absorbed in small bowel, enhanced by gastric acid ‣ Absorption inhibited by inflammation, phytates (bran) & tannins (tea) TEXT CAUSES OF IRON DEFICIENCY ‣ Blood loss – most common etiology ‣ Decreased intake ‣ Increased utilization-EPO therapy, chronic hemolysis ‣ Malabsorption – gastrectomy, sprue ‣ ‣ ‣ TEXT CLINICAL MANIFESTATIONS OF IRON DEFICIENCY ‣ Impaired psychomotor development ‣ Fatigue, Irritability ‣ PICA ‣ Koilonychiae, Glossitis, Angular stomatitis ‣ Dysphagia TEXT IRON DEFICIENCY LAB FINDINGS ‣ Low serum iron, increased TIBC ‣ % sat <20 TEXT MANAGEMENT OF IRON DEFICIENCY ‣ MUST LOOK FOR SOURCE OF BLEED: ie: GI, GU, Regular blood donor ‣ Replacement: 1. Oral: Ferrous sulfate 325 mg TID until serum iron, % sat, and ferritin mid-range normal, 6-12 months 2. IV TEXT SIDEROBLASTIC ANEMIAS Diverse group of disorders of RBC production characterized by: 1. Defect involving incorporation of iron into heme molecule 2. Ringed sideroblasts in -
Approach to Anemia
APPROACH TO ANEMIA Mahsa Mohebtash, MD Medstar Union Memorial Hospital Definition of Anemia • Reduced red blood mass • RBC measurements: RBC mass, Hgb, Hct or RBC count • Hgb, Hct and RBC count typically decrease in parallel except in severe microcytosis (like thalassemia) Normal Range of Hgb/Hct • NL range: many different values: • 2 SD below mean: < Hgb13.5 or Hct 41 in men and Hgb 12 or Hct of 36 in women • WHO: Hgb: <13 in men, <12 in women • Revised WHO/NCI: Hgb <14 in men, <12 in women • Scrpps-Kaiser based on race and age: based on 5th percentiles of the population in question • African-Americans: Hgb 0.5-1 lower than Caucasians Approach to Anemia • Setting: • Acute vs chronic • Isolated vs combined with leukopenia/thrombocytopenia • Pathophysiologic approach • Morphologic approach Reticulocytes • Reticulocytes life span: 3 days in bone marrow and 1 day in peripheral blood • Mature RBC life span: 110-120 days • 1% of RBCs are removed from circulation each day • Reticulocyte production index (RPI): Reticulocytes (percent) x (HCT ÷ 45) x (1 ÷ RMT): • <2 low Pathophysiologic approach • Decreased RBC production • Reduced effective production of red cells: low retic production index • Destruction of red cell precursors in marrow (ineffective erythropoiesis) • Increased RBC destruction • Blood loss Reduced RBC precursors • Low retic production index • Lack of nutrients (B12, Fe) • Bone marrow disorder => reduced RBC precursors (aplastic anemia, pure RBC aplasia, marrow infiltration) • Bone marrow suppression (drugs, chemotherapy, radiation) -
Names for GLOB (ISBT 028) Blood Group Alleles
Names for GLOB blood group alleles v2.0 110914 Names for GLOB (ISBT 028) Blood Group Alleles General description: The GLOB system was acknowledged in 2002 when the P or globoside antigen was moved from the 209 collection. The P antigen is the most common neutral glycosphingolipid in the red cell membrane, belongs to the globoseries and has the following structure: GalNAc3Gal4Gal4Glc1 ceramide, also known as globoside (Gb4Cer). The B3GALT3 gene was first reported in 1998 by Amado et al. to be a member of the 1,3-galactosyltransferase gene family and its product given the name 3Gal-T3. It was later shown by Okajima et al. to possess UDP-N-acetyl galactosamine:globotriaosylceramide 3--N-acetylgalactosaminyl- transferase or globoside synthase activity and the gene name changed to B3GALNT1 and its product renamed 3GalNAc-T1. This enzyme is responsible for the final step in the synthesis of the P antigen, the transfer of GalNAc to the terminal Gal of the Pk antigen. The final proof of this was the identification by Hellberg et al. of critical mutations in the B3GALNT1 gene as the genetic k k basis of P1 and P2 , the rare globoside-deficient null phenotypes of the GLOB system. Gene name: GLOB (B3GALNT1) Number of exons: 5 Initiation codon: Exon 5 Stop codon: Exon 5 GenBank #: AB050855 Entrez Gene ID: 26879 Reference allele: Accession number AB050855 Preferred: GLOB*01 (B3GALNT1*01) Acceptable: P if inferred by haemagglutination Amino acid RBC Phenotype Allele name Nucleotide change Exon change GLOB:1 (P+) GLOB*01 Null phenotypes† GLOB:–1 (P–) GLOB*01N.01 202C>T 5 67Stop GLOB:–1 (P–) GLOB*01N.02 292_293insA 5 97fs102Stop GLOB:–1 (P–) GLOB*01N.03 433C>T 5 Arg145Stop GLOB:–1 (P–) GLOB*01N.04 537_538insA 5 180fs182Stop GLOB:–1 (P–) GLOB*01N.05 648A>C 5 Arg216Ser GLOB:–1 (P–) GLOB*01N.06 797A>C 5 Glu266Ala GLOB:–1 (P–) GLOB*01N.07 811G>A 5 Gly271Arg Page 1 of 2 Names for GLOB blood group alleles v2.0 110914 GLOB:–1 (P–) GLOB*01N.08 959G>A 5 Trp320Stop † k k The null phenotype caused by these alleles can either be P1+ or P1–, i.e. -
Paroxysmal Cold Hemoglobinuria: a Case Report
CASE R EPO R T Paroxysmal cold hemoglobinuria: a case report S.C. Wise, S.H. Tinsley, and L.O. Cook A 15-month-old white male child was admitted to the pediatric hemolysis and possible pigment nephropathy and to rule out intensive care unit with symptoms of upper respiratory tract sepsis. He was started on oxygen by nasal cannula and given infection, increased somnolence, pallor, jaundice, fever, and intravenous fluids at half maintenance rates with bicarbonate decreased activity level. The purpose of this case study is to report the clinical findings associated with the patient’s administered to alkalinize the urine to prevent crystallization clinical symptoms and differential laboratory diagnosis. of myoglobin or hemoglobin. His urine output was monitored, Immunohematology 2012;28:118–23. and fluids were given judiciously to prevent congestive heart failure. He was also started empirically on ceftriaxone. Blood Key Words: cold agglutinin syndrome (CAS), direct and urine cultures were obtained and blood samples were antiglobulin test (DAT), Donath-Landsteiner (D-L), hemolytic sent to the blood bank for compatibility testing owing to the anemia (HA), LISS (low-ionic-strength saline), indirect patient’s low hemoglobin level and symptomatic anemia. antiglobulin test (IAT), paroxysmal cold hemoglobinuria (PCH) Results Case Report Blood bank serologic test results demonstrated the patient to be group O, D+. Results of antibody screening identified A 15-month-old white male child was admitted to the reactivity only after incubation at 37°C with low-ionic-strength pediatric intensive care unit with a several-day history of upper saline (LISS). Six units were crossmatched, and all were found respiratory tract infection symptoms, followed by increased to be incompatible after incubation at 37°C with LISS. -
Asymmetrical Periflexural Exanthem, Papular-Purpuric Gloves and Socks Syndrome, Eruptive Pseudoangiomatosis, and Eruptive Hypomelanosis
Eur. J. Pediat. Dermatol. 26, 25-9, 2016 Managements of the less common paraviral exanthems in children – asymmetrical periflexural exanthem, papular-purpuric gloves and socks syndrome, eruptive pseudoangiomatosis, and eruptive hypomelanosis Chuh A.1, Fölster-Holst R.2, Zawar V.3 1School of Public Health and Primary Care, The Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong 2Universitätsklinikum Schleswig-Holstein, Campus Kiel, Dermatologie, Venerologie und Allergologie, Germany 3Department of Dermatology, Godavari Foundation Medical College and Research Center, DUPMCJ, India Summary Although all paraviral exanthems in children are self-remitting, clinicians should be awa- re of the underlying viral infections leading to complications. Many reports covered the commonest paraviral exanthems, namely pityriasis rosea and Gianotti-Crosti syndrome. We reviewed here the managements of the less common paraviral exanthems in children. For asymmetrical periflexural exanthem/unilateral laterothoracic exanthem treatments should be tailored to the stages of the rash. For children with papular purpuric gloves and socks syndrome, important differential diagnoses such as Kawasaki disease should be ex- cluded. Where this exanthem is related to parvovirus B19 infection, the risk of aplastic reticulocytopenia should be monitored for. Clinicians should also be aware of ongoing in- fectivity of parvovirus B19 infection upon rash eruption, and possible exposure to pregnant women. For children with eruptive pseudoangiomatosis, important differential diagnoses should be excluded. For eruptive hypomelanosis, the prime concern is that virological investiga- tions should be contemplated where available, as there exists only clinical and epidemiolo- gical evidence for this novel exanthem being caused by an infectious microbe. Key words Acyclovir, Gianotti-Crosti syndrome, human herpesvirus-7, human herpesvirus-6, papu- lar acrodermatitis, pityriasis rosea. -
Efficacy of Recombinant Erythropoietin in Autoimmune Hemolytic Anemia: a Multicenter Associated Lymphoid Cells
Letters to the Editor CAD patients who showed typical monoclonal CAD- Efficacy of recombinant erythropoietin in autoimmune hemolytic anemia: a multicenter associated lymphoid cells. The median endogenous EPO international study was 32 U/L (9.3-1,328) greater than the normal range, but inadequate in 88% of AIHA subjects considering Hb Autoimmune hemolytic anemia (AIHA) is due to levels. Renal function was normal in all patients but two autoantibody mediated hemolysis with or without com- plement (C) activation.1,2 Increasing attention has been paid to the role of bone marrow compensation,3,4 since Table 1. Patients' characteristics at diagnosis. inadequate reticulocytosis is observed in 20-40% of cases Data at diagnosis All patients (N=51) and correlates with poor prognosis.3,5 Moreover, features resembling bone marrow failure syndromes have been Age years, median(range) 68 (25-92) described in patients with chronic and relapsed/refracto- M/F 24/27 ry AIHA, including dyserythropoiesis and fibrosis.6,7 Secondary AIHA, N(%) 5 (9) Recombinant erythropoietin (rEPO) is an established Type of AIHA treatment of myelodysplastic syndromes, which has been used in a limited number of AIHA cases.8,9 CAD, N(%) 21 (41) In this study, we systematically evaluated the safety WAIHA IgG, N(%) 11 (22) and efficacy of EPO treatment in a multicenter, interna- WAIHA IgG+C, N(%) 15 (29) tional European cohort of AIHA patients. The protocol MIXED, N(%) 3 (6) was approved by the Ethics Committees of Human Experimentation, and patients gave informed consent in DAT neg, N(%) 1 (2) accordance with the Declaration of Helsinki. -
A Child with Pancytopenia and Optic Disc Swelling Justin Berk, MD, MPH, MBA,A,B Deborah Hall, MD,B Inna Stroh, MD,C Caren Armstrong, MD,D Kapil Mishra, MD,C Lydia H
A Child With Pancytopenia and Optic Disc Swelling Justin Berk, MD, MPH, MBA,a,b Deborah Hall, MD,b Inna Stroh, MD,c Caren Armstrong, MD,d Kapil Mishra, MD,c Lydia H. Pecker, MD,e Bonnie W. Lau, MD, PhDe A previously healthy 16-year-old adolescent boy presented with pallor, blurry abstract vision, fatigue, and dyspnea on exertion. Physical examination demonstrated hypertension and bilateral optic nerve swelling. Laboratory testing revealed pancytopenia. Pediatric hematology, ophthalmology and neurology were consulted and a life-threatening diagnosis was made. aDivision of Intermal Medicine and Pediatrics, bDepartment c d CASE HISTORY 1% monocytes, 1% metamyelocytes, of Pediatrics; and Divisions of Ophthalmology, Pediatric Neurology, and ePediatric Hematology, School of Medicine, 1% atypical lymphocytes, 1% plasma Dr Berk, Moderator, General Johns Hopkins University, Baltimore, Maryland Pediatrics cells), absolute neutrophil count (ANC) of 90/mm3, hemoglobin level of Dr Berk was the initial author and led the majority of A previously healthy 16-year-old the writing; Dr Hall contributed to the Hematology 3.7 g/dL (mean corpuscular volume: section; Drs Stroh and Mishra contributed to the adolescent boy presented to his local 119 fL; red blood cell distribution Ophthalmology section; Dr Armstrong contributed to emergency department because his width: 15%; reticulocyte: 1.5%), and the Neurology section; Drs Pecker and Lau served as mother thought he looked pale. For 2 platelet count of 29 000/mm3. The senior authors, provided guidance, and contributed weeks, the patient had experienced to the genetic discussion, as well as to the overall laboratory results raised concern for fi occasional blurred vision (specifically, paper; and all authors approved the nal bone marrow dysfunction, particularly manuscript as submitted.