Blood Bank I D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Other Blood Group Systems—Diego,Yt, Xg, Scianna, Dombrock
Review: other blood group systems—Diego, Yt, Xg, Scianna, Dombrock, Colton, Landsteiner- Wiener, and Indian K.M. B YRNE AND P.C. B YRNE Introduction Diego Blood Group System This review was prepared to provide a basic The Diego blood group system (ISBT: DI/010) has overview of “Other Blood Groups.” Some of the more expanded from its humble beginnings to now include major blood group systems, i.e., ABO, Rh, Kell, Duffy, up to 21 discrete antigens (Table 1). 3 Band 3, an anion and Kidd, are also reviewed in this issue and are not exchange, multi-pass membrane glycoprotein, is the covered here. The sheer mass of data on the MNS basic structure that carries the Diego system antigenic blood group system is so extensive and complicated determinants. 4 The gene that encodes the Band 3 that it justifies a review all of its own, and it is therefore protein is named SLC4A1 and its chromosomal location not discussed in this article. However, various aspects is 17q12–q21. 4 of MNS were described in recent papers in Di a and Di b are antithetical, resulting from a single Immunohematology. 1,2 nucleotide substitution (2561T>C) that gives rise to The blood group systems that are covered are those amino acid changes in the Band 3 protein (Leu854Pro). that most workers believe to have some degree of To date, the Di(a–b–) phenotype has not been clinical importance or interesting features: Diego (DI), described. The Di a and Di b antigens are resistant to Yt (YT), Xg (XG), Scianna (SC), Dombrock (DO), Colton treatment with the following enzymes/chemicals: (CO), Landsteiner-Wiener (LW), and Indian (IN). -
Transfusion Problems in Hemolytic Anemias*
Transfusion Problems in Hemolytic Anemias* ALI A. HOSSAIN! Department of Pathdlogy, Medical College of Virginia, Richmond 23219 All hemolytic anemias feature shortened red cell Extrinsic Mechanisms survival due to premature hemolysis of the cell. For the Those hemolytic anemias which are due to extrinsic purposes of this presentation, we may classify the factors may be classified, further, as non-immune or hemolytic anemias, most broadly, according to the immune. Non-immune mechanisms include a) drugs mechanisms leading to hemolysis. and chemicals (phenylhydrazine, naphthalene, lead, snake venoms); b) physical agents (heat); c) bacteria Intrinsic Mechanisms and parasites (hemolytic streptococci, Clostridium Hemolytic anemias due to intrinsically defective welchii, Bartonella, plasmodia); and d) acquired sen erythrocytes are essentially of three types. First are sitivity to penicillin, methylodopa, Keftin®, or fava those anemias in which the red cells are defective due plant as examples. Some of the agents in this. last to lack of an essential factor, eg, pernicious anemia group serve to lyse the cells, either through duect in relapse. The second type includes those in which action or by formation of antibodies. the red cells have an abnormal shape because of an These hemolytic anemias due to extrinsic factors inherited error in the chemical makeup of the hemo of the non-immune variety present no transfusion globin molecules; eg, sickle cells, elliptocytes, sphero problem for the Blood Bank. However, it ~~st b.e cytes, and the target -
Hemolytic Disease of the Newborn
Intensive Care Nursery House Staff Manual Hemolytic Disease of the Newborn INTRODUCTION and DEFINITION: Hemolytic Disease of the Newborn (HDN), also known as erythroblastosis fetalis, isoimmunization, or blood group incompatibility, occurs when fetal red blood cells (RBCs), which possess an antigen that the mother lacks, cross the placenta into the maternal circulation, where they stimulate antibody production. The antibodies return to the fetal circulation and result in RBC destruction. DIFFERENTIAL DIAGNOSIS of hemolytic anemia in a newborn infant: -Isoimmunization -RBC enzyme disorders (e.g., G6PD, pyruvate kinase deficiency) -Hemoglobin synthesis disorders (e.g., alpha-thalassemias) -RBC membrane abnormalities (e.g., hereditary spherocytosis, elliptocytosis) -Hemangiomas (Kasabach Merritt syndrome) -Acquired conditions, such as sepsis, infections with TORCH or Parvovirus B19 (anemia due to RBC aplasia) and hemolysis secondary to drugs. ISOIMMUNIZATION A. Rh disease (Rh = Rhesus factor) (1) Genetics: Rh positive (+) denotes presence of D antigen. The number of antigenic sites on RBCs varies with genotype. Prevalence of genotype varies with the population. Rh negative (d/d) individuals comprise 15% of Caucasians, 5.5% of African Americans, and <1% of Asians. A sensitized Rh negative mother produces anti-Rh IgG antibodies that cross the placenta. Risk factors for antibody production include 2nd (or later) pregnancies*, maternal toxemia, paternal zygosity (D/D rather than D/d), feto-maternal compatibility in ABO system and antigen load. (2) Clinical presentation of HDN varies from mild jaundice and anemia to hydrops fetalis (with ascites, pleural and pericardial effusions). Because the placenta clears bilirubin, the chief risk to the fetus is anemia. Extramedullary hematopoiesis (due to anemia) results in hepatosplenomegaly. -
A Newly Recognized Blood Group in Domestic Shorthair Cats: the Mik Red Cell Antigen
J Vet Intern Med 2007;21:287–292 A Newly Recognized Blood Group in Domestic Shorthair Cats: The Mik Red Cell Antigen Nicole M. Weinstein, Marie-Claude Blais, Kimberly Harris, Donna A. Oakley, Lillian R. Aronson, and Urs Giger Background: Naturally occurring alloantibodies produced against A and B red cell antigens in cats can cause acute hemolytic transfusion reactions. Blood incompatibilities, unrelated to the AB blood group system, have also been suspected after blood transfusions through routine crossmatch testing or as a result of hemolytic transfusion reactions. Hypothesis: Incompatible crossmatch results among AB compatible cats signify the presence of a naturally occurring alloantibody against a newly identified blood antigen in a group of previously never transfused blood donor cats. The associated alloantibody is clinically important based upon a hemolytic transfusion reaction after inadvertent transfusion of red cells expressing this red cell antigen in a feline renal transplant recipient that lacks this red cell antigen. Methods: Blood donor and nonblood donor cats were evaluated for the presence of auto- and alloantibodies using direct antiglobulin and crossmatch tests, respectively, and were blood typed for AB blood group status. Both standard tube and novel gel column techniques were used. Results: Plasma from 3 of 65 cats and 1 feline renal transplant recipient caused incompatible crossmatch test results with AB compatible erythrocytes indicating these cats formed an alloantibody against a red cell antigen they lack, termed Mik. The 3 donors and the renal transplant recipient were crossmatch-compatible with one another. Tube and gel column crossmatch test results were similar. Conclusions and Clinical Importance: The absence of this novel Mik red cell antigen can be associated with naturally occurring anti-Mik alloantibodies and can elicit an acute hemolytic transfusion reaction after an AB-matched blood transfusion. -
Fcγr Binding and ADCC Activity of Human Igg Allotypes
fimmu-11-00740 May 4, 2020 Time: 17:25 # 1 ORIGINAL RESEARCH published: 06 May 2020 doi: 10.3389/fimmu.2020.00740 FcgR Binding and ADCC Activity of Human IgG Allotypes Steven W. de Taeye1,2*†, Arthur E. H. Bentlage2, Mirjam M. Mebius3, Joyce I. Meesters3, Suzanne Lissenberg-Thunnissen2, David Falck4, Thomas Sénard4, Nima Salehi1, Manfred Wuhrer4, Janine Schuurman3, Aran F. Labrijn3, Theo Rispens1‡ and Gestur Vidarsson2‡ 1 Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands, 2 Sanquin Research and Landsteiner Laboratory, Department of Experimental Edited by: Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands, 3 Genmab, Utrecht, Eric O. Long, Netherlands, 4 Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands National Institute of Allergy and Infectious Diseases (NIAID), United States Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function Reviewed by: of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated Amy W. Chung, ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fc- The University of Melbourne, Australia receptor (FcgR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene Geoffrey Thomas Hart, University of Minnesota Twin Cities, likely form a layer of variation in the strength of the ADCC-response, but this has United States never been studied in detail. We produced all 27 known IgG allotypes and assessed *Correspondence: FcgRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved Steven W. de Taeye [email protected]; similarly within subclass, large allotype-specific variation was found for IgG3. -
ISBT Working Party on Terminology for Red Cell Surface Antigens J
International Society of Blood Transfusion Societe lnternationale de Transfusion Sanguine Section Editor: H. Gunson, Manchester Vox Sang 1995;69:265-279 G. L. Daniels (Chair) D. J. Anstee, J. I? Cartron Blood Group Terminology 1995 ctl Dahr; I?D. Issitt ISBT Working Party on Terminology for Red Cell Surface Antigens J. J~irgensen,L. Kornstad C. Levene, C. Lomas-Francis A. Lubenko, D. Mallory J.J. Moulds, t: Okubo M. Overbreke, M. E. Reid I? Rouger, S. Seidl I? Sistonen, S. Wendel G. Woodfield, i? Zelinski Since the first human blood groups were discovered al- tions on red cell antigens. Much of the information provided most a century ago, many hundreds of new red cell antigens in the 1990 monograph [l] is reiterated here so that referral have been identified. Because of the extended time period back will not generally be required, but only references after over which these antigens were discovered, a variety of dif- 1990 are provided. ferent terminologies has been introduced. In some cases single capital letters were used (A, B, M, K), in some super- scripts distinguished allelic products (Fy’, Fyh),and in some ISBT Numerical Terminology a numerical notation was introduced (Fy3). Some antigens were given different names in different laboratories, based The mandate of the Working Party is to provide a termi- on alternative genetic theories (D and Rho). nology for red cell surface antigens. By definition, these an- In 1980 the International Society of Blood Transfusion tigens must be defined serologically by the use of a specific (ISBT) established a Working Party to devise a genetically antibody. -
Introduction to the Rh Blood Group.Pdf
Introduction to the Rhesus Blood Group Justin R. Rhees, M.S., MLS(ASCP)CM, SBBCM University of Utah Department of Pathology Medical Laboratory Science Program Objectives 1. Describe the major Rhesus (Rh) blood group antigens in terms of biochemical structure and inheritance. 2. Describe the characteristics of Rh antibodies. 3. Translate the five major Rh antigens, genotypes, and haplotypes from Fisher-Race to Wiener nomenclature. 4. State the purpose of Fisher-Race, Wiener, Rosenfield, and ISBT nomenclatures. Background . How did this blood group get its name? . 1937 Mrs. Seno; Bellevue hospital . Unknown antibody, unrelated to ABO . Philip Levine tested her serum against 54 ABO-compatible blood samples: only 13 were compatible. Rhesus (Rh) blood group 1930s several cases of Hemolytic of the Fetus and Newborn (HDFN) published. Hemolytic transfusion reactions (HTR) were observed in ABO- compatible transfusions. In search of more blood groups, Landsteiner and Wiener immunized rabbits with the Rhesus macaque blood of the Rhesus monkeys. Rhesus (Rh) blood group 1940 Landsteiner and Wiener reported an antibody that reacted with about 85% of human red cell samples. It was supposed that anti-Rh was the specificity causing the “intragroup” incompatibilities observed. 1941 Levine found in over 90% of erythroblastosis fetalis cases, the mother was Rh-negative and the father was Rh-positive. Rhesus macaque Rhesus (Rh) blood group Human anti-Rh and animal anti- Rh are not the same. However, “Rh” was embedded into blood group antigen terminology. The -
Genetic Variants Within the Erythroid Transcription Factor, KLF1, And
Accepted Manuscript Genetic Variants within the Erythroid Transcription Factor, KLF1, and Reduction of the Expression of Lutheran and Other Blood Group Antigens: Review of the in(Lu) Phenotype Nicole S. Fraser, Christine M. Knauth, Assia Moussa, Melinda M. Dean, Catherine A. Hyland, Andrew C. Perkins, Robert L. Flower, Elizna M. Schoeman PII: S0887-7963(18)30146-9 DOI: https://doi.org/10.1016/j.tmrv.2019.01.004 Reference: YTMRV 50565 To appear in: Transfusion Medicine Reviews Please cite this article as: N.S. Fraser, C.M. Knauth, A. Moussa, et al., Genetic Variants within the Erythroid Transcription Factor, KLF1, and Reduction of the Expression of Lutheran and Other Blood Group Antigens: Review of the in(Lu) Phenotype, Transfusion Medicine Reviews, https://doi.org/10.1016/j.tmrv.2019.01.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Genetic variants within the erythroid transcription factor, KLF1, and reduction of the expression of Lutheran and other blood group antigens: review of the In(Lu) phenotype Nicole S. Fraser* a,b, Christine M. Knauth* a,b , Assia Moussa a,b, Melinda M. Dean a, Catherine A. Hyland a,b, Andrew C. -
Autoimmune Hemolytic Anemia in COVID-19 Patients, the « Transmissible » Direct Coombs Test
J H C R JOURNAL OF HEMATOLOGY 2640-2823 AND CLINICAL RESEARCH Research Article More Information *Address for Correspondence: Alice Brochier, Hematology Department of Laboratory Medicine, Autoimmune hemolytic anemia in Saint-Luc University Hospital, Avenue Hippocrate 10, 1200 Brussels, Belgium, Tel: +322764 6814; COVID-19 patients, the « transmissible » Email: [email protected]; Véronique Deneys, Hematology Department of Laboratory Medicine, Saint-Luc University direct Coombs test Hospital, Avenue Hippocrate 10, 1200 Brussels, Belgium, Email: [email protected] Alice Brochier1*, Julien Cabo1, Claudine Guerrieri1, Leïla Belkhir2, Submitted: March 24, 2021 3 1 Pierre-François Laterre and Véronique Deneys * Approved: April 06, 2021 Published: April 07, 2021 1Hematology Department of Laboratory Medicine, Saint-Luc University Hospital, Brussels, Belgium 2Department of Internal Medicine and Infectious Diseases, Saint-Luc University Hospital, Brussels, How to cite this article: Brochier A, Cabo J, Guerrieri C, Belkhir L, Laterre PF, Deneys V. Belgium Autoimmune hemolytic anemia in COVID-19 3 Department of Intensive Care Medicine, Saint-Luc University Hospital, Brussels, Belgium patients, the « transmissible » direct Coombs test. J Hematol Clin Res. 2021; 5: 004-008. Abstract DOI: 10.29328/journal.jhcr.1001016 Copyright: © 2021 Brochier A, et al. This Background: Like other viruses, the SARS-CoV-2 (severe acute respiratory syndrome is an open access article distributed under coronavirus 2) appears to be responsible for several autoimmune complications. The occurrence the Creative Commons Attribution License, of autoimmune hemolytic anemia has been described in several case reports. This AIHA was also which permits unrestricted use, distribution, noticeable by the important number of blood transfusions required for COVID-19 (coronavirus and reproduction in any medium, provided the disease 2019) patients. -
Jka, Jkb, Jk – Co-Dominant Inheritance – Jk Is a Silent Allele
Kidd Blood Group System Qun Lu, MD Assistant Professor Division of Transfusion Medicine Department of Pathology and Laboratory Medicine UCLA, School of Medicine Los Angeles, California 02-05-2009 History of Kidd Blood Group System . Jka was discovered in 1951 by Allen: Mrs. Kidd had hemolytic disease of newborn (HDN) in her son. A new RBC alloantibody was detected in her serum, reacted with her husband’s RBCs. Jkb was found in 1953 by Plaut . The antigens were independent of other known blood groups. They named after Mrs. Kidd. Jk null phenotyp was found in 1959 by Pinkerton. Since the specificities were inseparable, the antibody was renamed anti-Jk3 which recognizes an antigen found whenever Jka or Jkb is present. ISBT Human Blood Group Systems ISBT Number Name Abbreviation 001 ABO ABO 002 MNS MNS 003 P P 004 Rh RH 005 Lutheran LU 006 Kell KEL 007 Lewis LE 008 Duffy FY 009 Kidd JK 010 Diego DI 011 Cartwright YT 012 XG XG 013 Scianna SC 014 Dombrock DO 015 Colton CO 016 Landsteiner-Wiener LW 017 Chido/Rodgers CH/RG 018 Hh H 019 Kx XK 020 Gerbich GE 021 Cromer CROM 022 Knops KN 023 Indian IN 024 Ok OK 025 Raph RAPH Kidd Antigens . Genotype: – Genes located on chromosome 18 – Three alleles Jka, Jkb, Jk – Co-dominant Inheritance – Jk is a silent allele . Common antigen ---- JK3 Ag: – Present with Jka and/or Jkb antigens – Whenever you have Jka or Jkb antigens on the RBC you also have Jk3 antigen. – Anti- Jk3 is against Jka,Jkb, Jk3 antigens, transfuse with Jk(a-b-) blood, very difficult to find Homozygous Heterozygous for Jka or Jkb for JKa and Jkb. -
Package Insert
Anti-Human Globulin Anti-IgG IH-Card AHG Anti-IgG (Rabbit)(Green)_____________________________________________________________________ English, B186359, Version 07, 2016.07 FOR IN VITRO DIAGNOSTIC USE Gel card for use with the IH-System MEETS FDA POTENCY REQUIREMENTS U.S. LICENSE NUMBER: 1845 Product-Identification: 74020 IH-Card AHG Anti-IgG: VOL 12 cards per box............ REF 813 420 100 VOL 48 cards per box............ REF 813 421 100 VOL 288cards per box........... REF 813 422 100 INTENDED USE The IH-Card AHG Anti-IgG is intended for the detection of antibodies on human red blood cells using the Direct and Indirect Antiglobulin Tests. SUMMARY Moreschi first described the use of Anti-Human Globulin in 1908.1 Coombs rediscovered the test in 1945.2,3 By injecting rabbits with human IgG, they were able to produce a protein (Anti-IgG) that reacted with ˝incomplete˝ antibodies (IgG). Most ˝incomplete˝ antibodies (IgG) fail to agglutinate red blood cells suspended in saline.4 Most clinically significant antibodies in red blood cell serology are of the IgG class and can only be detected by the use of Anti-IgG. The IH-Card AHG Anti-IgG is suitable for the Direct and Indirect Antiglobulin Tests. The Direct Antiglobulin Test allows the detection of in vivo sensitization of human red blood cells with immunoglobulins. The Indirect Antiglobulin Tests allows the detection of in vitro sensitization of human red blood cells with clinically significant antibodies. The Indirect Antiglobulin Test may be used for antibody detection, identification, IAT crossmatching , and D variant testing. An optional autocontrol may help to distinguish autoantibodies and alloantibodies. -
Targeted Exome Sequencing Defines Novel and Rare Variants in Complex Blood Group Serology Cases for a Red Blood Cell Reference Laboratory Setting
IMMUNOHEMATOLOGY Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting Elizna M. Schoeman ,1 Eileen V. Roulis ,1 Yew-Wah Liew,2 Jacqueline R. Martin,2 Tanya Powley,2 Brett Wilson,2 Glenda M. Millard ,1 Eunike C. McGowan ,1 Genghis H. Lopez ,1 Helen O’Brien ,1 Jennifer A. Condon,3 Robert L. Flower ,1 and Catherine A. Hyland 1 he key role of a modern red blood cell (RBC) ref- BACKGROUND: We previously demonstrated that erence laboratory in transfusion medicine is to targeted exome sequencing accurately defined blood employ serology to solve complex problems. group genotypes for reference panel samples Often, the lack of appropriate RBCs, sera, or characterized by serology and single-nucleotide T polymorphism (SNP) genotyping. Here we investigate reagents makes confident resolution of a complex case the application of this approach to resolve problematic difficult. Resources can be costly and scarce, if available at serology and SNP-typing cases. all, and often require collaboration and generosity of col- 1 STUDY DESIGN AND METHODS: The TruSight One leagues from other international laboratories. In addition, sequencing panel and MiSeq platform was used for reference laboratories commonly employ single- sequencing. CLC Genomics Workbench software was nucleotide polymorphism (SNP) typing microarrays for used for data analysis of the blood group genes RBC genotyping investigations; however, these arrays are implicated in the serology and SNP-typing problem. not comprehensive in their coverage of blood groups or 2-5 Sequence variants were compared to public databases variants. When the combination of traditional serologic listing blood group alleles.