2012 BRC BW Day One Cover Page

Total Page:16

File Type:pdf, Size:1020Kb

2012 BRC BW Day One Cover Page American College of Medical Toxicology 2012 www.acmt.net ACMT Medical Toxicology Board Review Course ARE YOU PREPARED? Astor Crowne Plaza Hotel New Orleans, LA September 8-10, 2012 SYLLABUS Day Two - 3 slides per page Sponsored by the University of Alabama School of Medicine Division of Continuing Medical Education American College of Medical Toxicology Medical Toxicology Board Review Course September 8-10, 2012 - New Orleans, LA Day 1 - Saturday, September 8, 2012 7:00-7:50am Breakfast & Stimulus Room 7:50-8:20am Welcome & Introductions 8:20-9:10am Pharmacokinetics/Toxicokinetics Howard A. Greller, MD, FACMT 9:10-10:00am Molecular Mechanisms William P. “Russ” Kerns II, MD, FACMT 10:00-10:20am Break 10:20-11:10am Analytical/Forensics Evan S. Schwarz, MD 11:10-12:00pm Autonomics/Neurotransmitters G. Patrick Daubert, MD 12:00-1:30pm Lunch –n-Learn: Mushrooms & Fish-borne Howard A. Greller, MD, FACMT 1:30-2:20pm Psychotropics G. Patrick Daubert, MD 2:30-3:20pm Cardiovascular Toxins Trevonne M. Thompson, MD 3:20-3:40pm Break 3:40-4:05pm Hydrocarbons Trevonne M. Thompson, MD 4:05-4:30pm Pharmaceutical Additives G. Patrick Daubert, MD 4:30-4:55pm Endocrine Trevonne M. Thompson, MD 6:00-7:30pm Welcome Reception - Napoleon House, 500 Chartres Street in the French Quarter Day 2 - Sunday, September 9, 2012 7:00-8:00AM Breakfast & Stimulus Room 8:00-8:50am Pesticides J. Dave Barry, MD, FACMT 8:50-9:15am Terrorism Hazmat J. Dave Barry, MD, FACMT 9:15-9:40am Antimicrobials Michael Policastro, MD 9:40-10:00am Break 10:00-10:50am GI/Heme Michael Policastro, MD 10:50-11:15am Chemotherapeutics Michael Policastro, MD 11:15-12:05pm Plants Thomas C. Arnold, MD, FACMT 12:05-1:30pm Lunch-n-Learn: Historical Outbreaks Stephen W. Munday, MD, MPH FACMT 1:30-2:20pm Envenomations Thomas C. Arnold, MD, FACMT 2:20-3:10pm Carcinogens Stephen W. Munday, MD, MPH, FACMT 3:10-3:30pm Break 3:30-4:20pm Misc Toxins 1 Brandon K. Wills, DO, FACMT 4:20-4:45pm Misc Toxins 2 Brandon K. Wills, DO, FACMT Day 3 - Monday, September 10, 2012 7:00-8:00am Breakfast & Stimulus Room 8:00-8:50am Anesthetics; Drugs of Abuse & Withdrawal Kurt C. Kleinschmidt, MD, FACMT 8:50-9:15am Herbal/Supplemental Tox Kurt C. Kleinschmidt, MD, FACMT 9:15-10:05am Industrial Poisons Jefrey Brent, MD, PhD, FACMT 10:05-10:25am Break 10:25-11:15am Assessment/Population Health/Risk Jefrey Brent, MD, PhD, FACMT 11:15-12:05pm Metals/Metalloids 1 Cyrus Rangan, MD 12:05-12:30pm Metals/Metalloids 2 Cyrus Rangan, MD John G. Benitez, MD, MPH, FACMT 12:30-3:00pm Stimulus Room Russ Kerns, MD, FACMT Pesticides ACMT Board Review Course J. Dave Barry Naval Medical Center Portsmouth Portsmouth, VA 2 Pesticides Insecticides Fungicides Rodenticides Fumigants Herbicides Others 3 1 Pesticides Insecticides Cholinesterase Inhibitors Organophosphates Carbamates Organochlorines Pyrethrins/Pyrethroids Newer Insecticides 4 Insecticides Cholinesterase Inhibitors O Carbamates R1 Ordeal (Calabar) Bean R-O C N (or S) R2 Carbamates Organophosphates O (or S) Synthesized R2 P R1 X Organophosphates 5 Insecticides Cholinesterase Inhibitors 6 Goldfrank’s Toxicologic Emergencies – 8th Ed (2006) 2 Pesticides sympathetic Autonomic Nervous System parasympathetic N M M C N T ne N ne L N M S N 7 Sympathetic Parasympathetic (cholinergic) agit N M Sz M C sec mio N T sec rr ne sec vasoconstr hr N hr ne L mot N M S sec Fasic N 8 paraly mict Insecticides Organophosphates Delayed Syndromes Intermediate Syndrome Weakness 1-4d after exposure peripheral NMJ dysfunction ineffective AChE reactivation OPIDN Neuropathy target esterase (NTE) Lysophospholipase (lysoPLA) TOCP (tri-ortho cresyl phosphate) Jamaican ginger paralysis (1930’s) Cooking oils (1950’s) 9 3 Pesticides Insecticides Organophosphates Diagnosis RBC Cholinesterase Butyrylcholinesterase (pseudocholinesterase) Better reflection of Falls first synaptic inhibition Recovers rapidly (few days) Regenerates more Wide daily variation slowly than neuronal in other disorders AchE Liver dysfunction Wide variations Malnutrition in RBC disorders Drugs Pregnancy 10 Genetic deficiency Insecticides Cholinesterase Inhibitor Treatment Decontamination Protect Providers Glove Bag Skin Triple wash – soap/water Shave scalp? GI Gastric? AC? 11 Insecticides Cholinesterase Inhibitor Treatment Decontamination Antimuscarinic Agents Atropine Infusion 0.02 – 0.08 mg/kg/hr Bolus 2mg q 2-15 min / double dose Glycopyrrolate Scopolamine 12 4 Pesticides Insecticides Cholinesterase Inhibitor Treatment Decontamination Antimuscarinic Agents Benzodiazepine Diazepam 13 Insecticides Cholinesterase Inhibitor Treatment Decontamination Antimuscarinic Agents Benzodiazepine (Organophosphates) Oximes Pralidoxime Bolus: 600mg q ?4hr Infusion: 1-2g load f/b Obidoxime, HI-6 500mg/hr ?carbaryl? 14 Insecticides Organophosphates Aging & Oximes R “Aging” 15 5 Pesticides Insecticides Organochlorines Large family of neuroexcitatory toxins DDT and analogues Cyclodienes Hexachlorocyclohexane (lindane) Mirex and chlordecone 16 Insecticides Organochlorines Large family of neuroexcitatory toxins DDT and analogues Most banned from industrialized countries Na Ch Blockade Neuroexcitation 17 Insecticides Organochlorines Large family of neuroexcitatory toxins DDT and analogues Cyclodienes Most banned from industrialized countries GABA Antagonists neuroexcitation 18 6 Pesticides Insecticides Organochlorines Large family of neuroexcitatory toxins DDT and analogues Cyclodienes Hexachlorocyclohexane (lindane) Scabicide GABA Antagonist Seizures, neuroexcitation 19 Insecticides Organochlorines Large family of neuroexcitatory toxins DDT and analogues Cyclodienes Hexachlorocyclohexane (lindane) Mirex and chlordecone Hopewell Epidemic (1974) “Kepone Shakes” 20 Insecticides Pyrethrins/Pyrethroids Pyrethrins Naturally occuring NaCh openers Rapidly decompose Pyrethroids Synthetic derivatives More persistent, potent Piperonyl butoxide P450 inhibitor 21 7 Pesticides Insecticides Pyrethrins/Pyrethroids Toxicity Pyrethrins Allergic Pyrethroids Type 1 Type II Non-CN -CN “T” Syndrome More potent Tremor “CS” Syndrome Low tox in humans Choreoathetosis, salivation GI (saliv, n/v/d), pulmonary neuroexcitation 22 Insecticides Pyrethrins/Pyrethroids Treatment Supportive Decontamination Skin GI - AC 23 Insecticides Others Boric Acid Ant/cockroach killer Mechanism unclear Symptoms GI (blue-green emesis/diarrhea) Kidney CNS/Neuro Derm (boiled lobster rash) 24 8 Pesticides Insecticides Others Amitraz 2-agonism Treatment Fipronil supportive GABA antagonist Insect:Human 1000:1 Imidacloprid Nicotinic Avermectins (abamectin, ivermectin) Fermentation of Streptomyces avermitilis 25 Rodenticides 26 Rodenticides Compound 1080/1081 Sodium Monofluoroacetate (SMFA) Compound 1080 Flouroacetamide Compound 1081 Inhibit aconitase in Krebs cycle “lethal synthesis” 27 9 Pesticides Compound 1080/1081 28 Rodenticides Compound 1080/1081 Symptoms apprehension dysrhythmias, seizures, coma, ↓ Ca Not flouride toxicity Treatment Unknown Ethanol, Glycerol 29 monoacetate, Rodenticides PNU (Vacor) n-3-pyridylmethyl-N-p-nitrophenyl urea Interferes with nicotinamide activity in pancreas, brain, liver Rapid development of Diabetes mellitus (DKA) Orthostatic hypotension CNS toxicity GI perforation 30 10 Pesticides Rodenticides PNU (Vacor) Treatment Aggressive Decontamination Nicotinamide Niacin 31 Rodenticides Phosphine Rodenticide (Zinc Phosphide) Fumigant (Aluminum Phosphide) Phosphine gas Cellular poison Inhibits cytochrome oxidase and ETC Rotten fish / garlic-like odor 32 Rodenticides Phosphene Symptoms Low level exposure Pulmonary edema (delayed) High level exposure Multisystem failure N/V, coma, seizures, hypertension, pulmonary edema 33 11 Pesticides Rodenticides Phosphene Treatment Inhalation – supportive Ingestion Intubation lavage/suction diluted HCO3 solution, milk Supportive NAC, Mg 34 Rodenticides Strychnine Strychnos nux vomica Glycine inhibition Involuntary generalized muscular contractions Opisthotonos, trismus, risus sardonicus Treatment Benzodiazepines NM Blockade 35 Rodenticides ATNU α-naphthyl-thiourea Acute pulmonary edema Mechanism unknown 36 12 Pesticides History ‘superwarfarins’ Longer T1/2 100X more potent Same mechanism 37 Warfarins Exogenous Vitamin K Vit K (phytonadione) Quinone Vit Ki (inactive) Vit Ka (active) Vit K 2,3 epoxide hydroquinone FFP Factors II,VII,IX,X Factors Iia,VIIa,Ixa,Xa (active)38 Diagnosis & Treatment Child/unintentional none Suicidal/other Labs Vit K1 (phytonadione) IV, PO, IM FFP 39 13 Pesticides Bromethalin Uncouples oxidative phosphorylation AMS, myoclonus, seizures, coma Norbormide (dicarboximide) Norway rat selective smooth muscle constriction Death from profound vasoconstriction Other rats, rodents, humans don’t have the same receptor or transporter 40 Herbicides Bipyridyl herbicides Paraquat Diquat Chlorphenoxy herbicides 2,4-D, 2,4,5-T and Agent Orange Glyphosate Anilide derivatives 41 Paraquat/Diquat Redox cycling 1 – depletion of NADPH 2 – superoxide formation 3 – lipid peroxidation cascade 4 – glutathione & NADPH depletion 42 14 Pesticides Paraquat Active transport into Type I & II alveolar epithelial cells Surfactant depletion, destruction of alveoli 43 Symptoms Dependant on amount ingested May be delayed, especially with dilute products Caustic (Skin, GI Mucosa) Renal Toxicity/Failure ARDS Paraquat
Recommended publications
  • Protabase Record Display Datura Stramonium L
    Protabase Record display www.prota.org Datura stramonium L. Protologue Sp. pl. 1: 179 (1753). Family Solanaceae Chromosome number 2n = 24 Vernacular names Thorn apple, green thorn apple, Jimson weed, Jamestown weed, devil’s apple, devil’s trumpet, stramonium (En). Pomme épineuse, stramoine, datura, feuille du diable, herbe du diable (Fr). Figueira do inferno, pomo espinhoso, erva dos bruxos, palha verde, estramonio (Po). Muranha (Sw). Origin and geographic distribution Datura stramonium is native to the Americas and has been introduced in many tropical, subtropical and even temperate regions. It is a naturalized weed in many African countries, but is probably seriously under-reported. Uses Datura stramonium and Datura metel L. have largely similar medicinal uses throughout the world. The most widely known use of Datura stramonium and of other Datura species is for relieving asthma, cough, tuberculosis and bronchitis by smoking the dried leaves, roots or flowers. ‘Asthma cigarettes’ have been shown to be very effective in some cases, but in other cases they had little or no effect. Cigarettes made with the leaves are also used to treat Parkinson’s disease. A decoction or infusion of leaves is given as a sedative to mental and schizophrenic patients. The leaves are applied as a dressing to cure rheumatic pain, swellings, wounds, gout, burns, ingrown toe-nails, fungal infections, tumours and ulcers. Dried pulverized leaves are dusted on wounds or applied after mixing the powder with fat or Vaseline. In DR Congo pounded fresh root and fresh leaves are soaked in water and the liquid is given in enema as an abortifacient.
    [Show full text]
  • Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
    agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies.
    [Show full text]
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • Current Awareness in Clinical Toxicology Editors: Damian Ballam Msc and Allister Vale MD
    Current Awareness in Clinical Toxicology Editors: Damian Ballam MSc and Allister Vale MD August 2016 CONTENTS General Toxicology 6 Metals 30 Management 14 Pesticides 31 Drugs 16 Chemical Warfare 33 Chemical Incidents & 24 Plants 34 Pollution Chemicals 25 Animals 34 CURRENT AWARENESS PAPERS OF THE MONTH Toxicity evaluation of α-pyrrolidinovalerophenone (α-PVP): results from intoxication cases within the STRIDA project Beck O, Franzén L, Bäckberg M, Signell P, Helander A. Clin Toxicol 2016; 54: 568-75. Context An increasing number of new psychoactive substances (NPS) of different chemical classes have become available through marketing and sale over the Internet. This report from the Swedish STRIDA project presents the prevalence, laboratory results, and clinical features in a series of intoxications involving the stimulant NPS -pyrrolidinovalerophenone (-PVP), a potent dopamine re-uptake inhibitor, over a 4-year period. Study design Observational case series of consecutive patients with admitted or suspected intake of NPS presenting to hospitals in Sweden from 2012 to 2015. Patients and methods In the STRIDA project, blood and urine samples are collected from intoxicated patients with admitted or suspected intake of NPS or unknown drugs presenting to hospitals over the country. Analysis of NPS is performed by mass spectrometry multicomponent methods. Clinical data are collected when caregivers consult the Swedish Poisons Information Centre Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units. The NPIS is commissioned by Public Health England 2 (PIC), and retrieved from medical records.
    [Show full text]
  • Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
    Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required.
    [Show full text]
  • Inventory of Toxic Plants in Morocco: an Overview of the Botanical, Biogeography, and Phytochemistry Studies
    Hindawi Journal of Toxicology Volume 2018, Article ID 4563735, 13 pages https://doi.org/10.1155/2018/4563735 Review Article Inventory of Toxic Plants in Morocco: An Overview of the Botanical, Biogeography, and Phytochemistry Studies Hanane Benzeid , Fadma Gouaz, Abba Hamadoun Touré, Mustapha Bouatia , Mohamed Oulad Bouyahya Idrissi, and Mustapha Draoui LaboratoiredeChimieAnalytiqueetdeBromatologie,FacultedeM´ edecine´ et de Pharmacie, Universite´ Mohamed V, Rabat, Morocco Correspondence should be addressed to Hanane Benzeid; [email protected] Received 10 December 2017; Revised 22 February 2018; Accepted 25 March 2018; Published 3 May 2018 Academic Editor: Orish Ebere Orisakwe Copyright © 2018 Hanane Benzeid et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Since they are natural, plants are wrongly considered nondangerous; therefore people used them in various contexts. Each plant is used alone or in mixture with others, where knowledge and the requirements of preparation and consumption are not mastered. Tus, intoxications due to the use of plants have become more and more frequent. Te reports of intoxications made at the Antipoison Center and Pharmacovigilance of Morocco (ACPM) support this fnding, since the interrogations sufered by the victimsshowthattheuseofplantsispracticedirrationally,anarchically, and uncontrollably. Faced by the increase of these cases of poisoning in Morocco, it seemed necessary to investigate the nature of poisonous plants, their monographs, and the chemicals responsible for this toxicity. 1. Introduction Tus, we thought it is necessary to study the nature of these poisonous plants and their monographs. Sinceimmemorialtime,thehumanhasusedplants,frstto feed himself and then to heal himself.
    [Show full text]
  • Calarp) Program
    California Accidental Release Prevention (CalARP) Program Administering Agency Guidance January 31, 2005 Preface This document provides general guidance to help Administering Agencies (AAs) implement and enforce the California Accidental Release Prevention (CalARP) Program. The intent is to identify the elements of the Program applicable to each regulated business, and assist AAs with oversight of the CalARP Program statutes and regulations. This document is not a substitute for the CalARP Program regulations; it does not impose legally binding requirements. About This Document This document follows the format of the California Code of Regulations, Title 19, Division 2, Chapter 4.5: California Accidental Release Prevention (CalARP) Program. The regulatory sections are presented in parentheses for ease of reference. Acknowledgements The California Emergency Management Agency (Cal EMA) would like to thank the following people for their valuable assistance in the preparation of this document: Howard Wines, Hazardous Materials Specialist, City of Bakersfield Fire Department Robert Distaso P.E., Fire Safety Engineer, Orange County Fire Authority Randall L. Sawyer, Supervisor, Accidental Release Prevention Programs, Contra Costa County Health Services Department Beronia Beniamine, Senior Hazardous Materials Specialist, Stanislaus County Environmental Resources Department Angie Proboszcz, Risk Management Program Coordinator, USEPA Region 9 Jon Christenson, Senior Environmental Health Specialist, Merced County Department of Public Health Teresa
    [Show full text]
  • XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta
    Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta To cite this article: (2015) XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian's, Malta, Clinical Toxicology, 53:4, 233-403, DOI: 10.3109/15563650.2015.1024953 To link to this article: http://dx.doi.org/10.3109/15563650.2015.1024953 Published online: 26 Mar 2015. Submit your article to this journal Article views: 3422 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [UPSTATE Medical University Health Sciences Library] Date: 28 December 2016, At: 10:31 Clinical Toxicology (2015), 53, 233–403 Copyright © 2015 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2015.1024953 ABSTRACTS XXXV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 26–29 May 2015, St Julian ’ s, Malta 1. Modelling dose-concentration-response Introduction: The American Association of Poison Control Cen- ters (AAPCC) published its fi rst annual report in 1983. Call data Ursula Gundert-Remy from sixteen US poison centers was chronicled in that report. Seven submitted data for the entire year. By July 2000, 63 centers Institute for Clinical Pharmacology and Toxicology, Charit é were part of the national poison center system, but only 59 submit- Medical School, Berlin, Germany ted data for the full year.
    [Show full text]
  • The Notification of Injuries from Hazardous Substances
    The Notification of Injuries from Hazardous Substances Draft Guidelines and Reference Material for Public Health Services To be used to assist in a pilot study from July – December 2001 April 2001 Jeff Fowles, Ph.D. Prepared by the Institute of Environmental Science and Research, Limited Under contract by the New Zealand Ministry of Health DISCLAIMER This report or document ("the Report") is given by the Institute of Environmental Science and Research Limited ("ESR") solely for the benefit of the Ministry of Health, Public Health Service Providers and other Third Party Beneficiaries as defined in the Contract between ESR and the Ministry of Health, and is strictly subject to the conditions laid out in that Contract. Neither ESR nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for use of the Report or its contents by any other person or organisation. Guidelines for the Notification of Injuries from Hazardous Substances April 2001 Acknowledgements The author wishes to thank Dr Michael Bates and Melissa Perks (ESR), Sally Gilbert and Helen Saba (Ministry of Health), Dr Donald Campbell (Midcentral Health), Dr Deborah Read (ERMANZ), and Dr Nerida Smith (National Poisons Centre) for useful contributions and helpful suggestions on the construction of these guidelines. Guidelines for the Notification of Injuries from Hazardous Substances April 2001 TABLE OF CONTENTS SUMMARY ........................................................................................................................1
    [Show full text]
  • Studies in Microencapsula Tion of Rodenticides
    STUDIES IN MICROENCAPSULA TION OF RODENTICIDES P. B. CORNWEL,.L, Director of Research, Rentokil Laboratories ltd., Felcourt, E. Grinstead, Sussex, England ABSTRACT: Warfarln, zinc phosphide, norbormlde and alphachloralose have been mlcroencapsu­ lated by the technique of coacervatlon and fed to laboratory rats (R. norveglcus) and mice (H. mU$CUlus). Results are given of experiments In which the concentration of rodentlclde, wall material and phase ratio have been varied separately and in combination. Experiments are also repot'ted In which normal and encapsulated rodentlclde have been fed together In the same test diet. Hlcroencapsulatlon can Increase the Intake of rodentlcldes, appreciably, whether or not alternative food is simultaneously available. Nevertheless, significantly higher kills from higher Intakes of poison have not been achieved, Indicating difficulties In optimising the characteristics of the capsule wall to achieve the desired release of Ingested active In­ gredient. INTl\ODUCTION Hlcroencapsulatlon can be defined as a chemical process by which minute amounts of solids or liquids are enclosed within a thin wall of suitable material to prevent their reaction with some component of the environment. The properties of the wall are so designed to keep the reactive materials apart until they are required to mix. Hlcroencapsulatlon, as an Industrial process, has been developed for many applications by the Natlon~l Cash Register Co. These Include carbonless copying paper, drugs with design­ ed release characteristics, as well as uses In the perfumery, adhesive and food Industries (Gordon, 1965) . The costs vary from 40 U.S. cents to $4 per kg. of encapsulated material (Watson, 1970) and many future applications have been proposed.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/00284.18 A1 Parker Et Al
    US 2011 002841 8A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/00284.18 A1 Parker et al. (43) Pub. Date: Feb. 3, 2011 (54) USE OF GABBA RECEPTOR ANTAGONISTS Publication Classification FOR THE TREATMENT OF EXCESSIVE SLEEPINESS AND DISORDERS ASSOCATED (51) Int. Cl. WITH EXCESSIVE SLEEPINESS A63L/7028 (2006.01) A 6LX 3/557 (2006.01) (75) Inventors: Kathy P. Parker, Rochester, NY A63L/335 (2006.01) (US); David B. Rye, Dunwoody, A63L/4355 (2006.01) GA (US); Andrew Jenkins, A63L/047 (2006.01) Decatur, GA (US) A6IP 25/00 (2006.01) Correspondence Address: (52) U.S. Cl. ........... 514/29: 514/220; 514/450, 514/291; FISH & RICHARDSON P.C. (AT) 5147738 P.O BOX 1022 Minneapolis, MN 55440-1022 (US) (57) ABSTRACT (73) Assignee: Emory University, Atlanta, GA GABA receptor mediated hypersomnia can be treated by (US) administering a GABA receptor antagonist (e.g., flumazenil; clarithromycin; picrotoxin; bicuculline; cicutoxin; and (21) Appl. No.: 12/922,044 oenanthotoxin). In some embodiments, the GABA receptor antagonist is flumazenil or clarithromycin. The GABA (22) PCT Filed: Mar. 12, 2009 receptor mediated hypersomnia includes shift work sleep disorder, obstructive sleep apnea/hypopnea syndrome, narco (86). PCT No.: PCT/USO9/37034 lepsy, excessive sleepiness, hypersomnia (e.g., idiopathic hypersomnia; recurrent hyperSonmia; endozepine related S371 (c)(1), recurrent stupor; and amphetamine resistant hyperSonmia), (2), (4) Date: Sep. 10, 2010 and excessive sleepiness associated with shift work sleep disorder, obstructive sleep apnea/hypopnea syndrome, and Related U.S. Application Data hypersomnia (e.g., idiopathic hypersomnia; recurrent hyper (60) Provisional application No.
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]