Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Rhodopsin Gene Expressed in Photoreceptor Cell R7 of the Drosophila Eye: Homologies with Other Signal-Transducing Molecules
The Journal of Neuroscience, May 1987, 7(5): 1550-I 557 A Rhodopsin Gene Expressed in Photoreceptor Cell R7 of the Drosophila Eye: Homologies with Other Signal-Transducing Molecules Charles S. Zuker, Craig Montell, Kevin Jones, Todd Laverty, and Gerald M. Rubin Department of Biochemistry, University of California, Berkeley, California 94720 We have isolated an opsin gene from D. melanogaster that example, Pak, 1979; Hardie, 1983; Rubin, 1985). The com- is expressed in the ultraviolet-sensitive photoreceptor cell pound eye of Drosophila contains 3 distinct classesof photo- R7 of the Drosophila compound eye. This opsin gene con- receptor cells, Rl-6, R7, and R8, distinguishableby their mor- tains no introns and encodes a 383 amino acid polypeptide phological arrangement and the spectral behavior of their that is approximately 35% homologous to the blue absorbing corresponding visual pigments (reviewed by Hardie, 1983). In ninaE and Rh2 opsins, which are expressed in photoreceptor each of the approximately 800 ommatidia that make up the eye cells RI-6 and R8, respectively. Amino acid homologies be- there are 6 outer (Rl-R6) and 2 central (1 R7 and 1 R8) pho- tween these different opsins and other signal-transducing toreceptor cells (Fig. 1). The photopigments found in the Rl- molecules suggest an important role for the conserved do- R6 cells, the R7 cell, and the R8 cell differ in their absorption mains of rhodopsin in the transduction of extracellular sig- spectra (Harris et al., 1976) most likely becausedifferent opsin nals. genesare expressedin these distinct classesof photoreceptor cells. The 6 peripheral cells (RI-6) contain the major visual Phototransduction, the neuronal excitation processtriggered by pigment, a rhodopsin that absorbsmaximally at 480 nm (Ostroy light, provides an ideal model system for the study of sensory et al., 1974). -
Chemoreception
Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath. -
Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma
Investigative Ophthalmology & Visual Science, Vol. 32, No. 3, March 1991 Copyright © Association for Research in Vision and Ophthalmology Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma Yoseph Glovinsky,* Harry A. Quigley,f and Gregory R. Dunkelbergerf Thirty-two areas located in the temporal midperipheral retina were evaluated in whole-mount prepara- tions from four monkeys with monocular experimental glaucoma. Diameter frequency distributions of remaining ganglion cells in the glaucomatous eye were compared with corresponding areas in the normal fellow eye. Large cells were significantly more vulnerable at each stage of cell damage as determined by linear-regression analysis. The magnitude of size-dependent loss was moderate at an early stage (20% loss), peaked at 50% total cell loss, and decreased in advanced damage (70% loss). In glaucomatous eyes, the lower retina had significantly more large cell loss than the corresponding areas of the upper retina. In optic nerve zones that matched the retinal areas studied, large axons selectively were damaged first. Psychophysical testing aimed at functions subserved by larger ganglion cells is recommended for detection and follow-up of early glaucoma; however, assessment of functions unique to small cells is more appropriate for detecting change in advanced glaucoma. Invest Ophthalmol Vis Sci 32:484-491, 1991 Current psychophysical tests do not detect glau- tage of ideal cellular preservation. Eyes with mild, comatous damage until a substantial minority of reti- moderate, and late damage were evaluated. In addi- nal ganglion cells have died.1'2 To develop more sen- tion, we correlated the damage patterns in the retinas sitive tests, a comprehensive understanding of the and optic nerves of the glaucomatous eyes. -
Intrinsically Different Retinal Progenitor Cells Produce Specific Types Of
PERSPECTIVES These clonal data demonstrated that OPINION RPCs are generally multipotent. However, these data could not determine whether Intrinsically different retinal the variability in clones was due to intrinsic differences among RPCs or extrinsic and/ progenitor cells produce specific or stochastic effects on equivalent RPCs or their progeny. Furthermore, the fates identi- fied within a clone demonstrated an RPC’s types of progeny ‘potential’ but not the ability of an RPC to make a specific cell type at a specific devel- Connie Cepko opmental time or its ‘competence’ (BOX 2). Moreover, although many genes that regu- Abstract | Lineage studies conducted in the retina more than 25 years ago late the development of retinal cell types demonstrated the multipotency of retinal progenitor cells (RPCs). The number have been studied, using the now classical and types of cells produced by individual RPCs, even from a single time point in gain- and loss‑of‑function approaches18,19, development, were found to be highly variable. This raised the question of the precise roles of such regulators in defin- whether this variability was due to intrinsic differences among RPCs or to extrinsic ing an RPC’s competence or potential have not been well elucidated, as most studies and/or stochastic effects on equivalent RPCs or their progeny. Newer lineage have examined the outcome of a perturba- studies that have made use of molecular markers of RPCs, retrovirus-mediated tion on the development of a cell type but lineage analyses of specific RPCs and live imaging have begun to provide answers not the stage and/or cell type in which such a to this question. -
Wnt/Β-Catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish
Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand A dissertation Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Randall Moon, Chair Neil Nathanson Ronald Kwon Program Authorized to Offer Degree: Pharmacology ©Copyright 2016 Nicholas Stockton Strand University of Washington Abstract Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand Chair of the Supervisory Committee: Professor Randall T Moon Department of Pharmacology The ability to regenerate tissue after injury is limited by species, tissue type, and age of the organism. Understanding the mechanisms of endogenous regeneration provides greater insight into this remarkable biological process while also offering up potential therapeutic targets for promoting regeneration in humans. The Wnt/β-catenin signaling pathway has been implicated in zebrafish regeneration, including the fin and nervous system. The body of work presented here expands upon the role of Wnt/β-catenin signaling in regeneration, characterizing roles for Wnt/β-catenin signaling in multiple tissues. We show that cholinergic signaling is required for blastema formation and Wnt/β-catenin signaling initiation in the caudal fin, and that overexpression of Wnt/β-catenin ligand is sufficient to rescue blastema formation in fins lacking cholinergic activity. Next, we characterized the glial response to Wnt/β-catenin signaling after spinal cord injury, demonstrating that Wnt/β-catenin signaling is necessary for recovery of motor function and the formation of bipolar glia after spinal cord injury. Lastly, we defined a role for Wnt/β-catenin signaling in heart regeneration, showing that cardiomyocyte proliferation is regulated by Wnt/β-catenin signaling. -
“Análisis De Los Receptores Tirosina Quinasa ALK, RET Y ROS En Los Adenocarcinomas Nasosinusales”
Universidad de Oviedo Programa de Doctorado “Biomedicina y Oncología Molecular” “Análisis de los receptores tirosina quinasa ALK, RET y ROS en los adenocarcinomas nasosinusales” TESIS DOCTORAL Esteban Reinaldo Pacheco Coronel 20/02/2017 Universidad de Oviedo Programa de Doctorado “Biomedicina y Oncología Molecular” TESIS DOCTORAL “Análisis de los receptores tirosina quinasa ALK, RET y ROS en los adenocarcinomas nasosinusales” Autor: Directores: Esteban Reinaldo José Luís Llorente Pendás Pacheco Coronel Mario Hermsen Dedicatoria A mi familia y amigos, por estar siempre a mi lado y apoyarme en cada momento. Agradecimientos A José Luis por brindarme la oportunidad de trabajar en un tema ambicioso y muy interesante, por los buenos consejos y el tiempo invertido para que este proyecto salga adelante. A Mario, por su valiosa colaboración en el laboratorio, en el análisis de muestras e interpretación de resultados, sus enseñanzas de las diferentes técnicas aplicadas y manejo en el laboratorio; sus consejos sobre la metodología, resultados y conclusiones del proyecto. A mis compañeros del servicio de Otorrinolaringología del Hospital Central de Asturias por sus enseñanzas y el trabajo en equipo. A los compañeros del Instituto Universitario de Oncología del Principado de Asturias. Por que gracias a su trabajo hemos aprendido y desarrollado técnicas importantes para la elaboración de este proyecto. 1 ANTECEDENTES ............................................................................... 1 1.1 Introducción ................................................................................... -
Notch-Signaling in Retinal Regeneration and Müller Glial Plasticity
Notch-Signaling in Retinal Regeneration and Müller glial Plasticity DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kanika Ghai, MS Neuroscience Graduate Studies Program The Ohio State University 2009 Dissertation Committee: Dr. Andy J Fischer, Advisor Dr. Heithem El-Hodiri Dr. Susan Cole Dr. Paul Henion Copyright by Kanika Ghai 2009 ABSTRACT Eye diseases such as blindness, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are highly prevalent in the developed world, especially in a rapidly aging population. These sight-threatening diseases all involve the progressive loss of cells from the retina, the light-sensing neural tissue that lines the back of the eye. Thus, developing strategies to replace dying retinal cells or prolonging neuronal survival is essential to preserving sight. In this regard, cell-based therapies hold great potential as a treatment for retinal diseases. One strategy is to stimulate cells within the retina to produce new neurons. This dissertation elucidates the properties of the primary support cell in the chicken retina, known as the Müller glia, which have recently been shown to possess stem-cell like properties, with the potential to form new neurons in damaged retinas. However, the mechanisms that govern this stem-cell like ability are less well understood. In order to better understand these properties, we analyze the role of one of the key developmental processes, i.e., the Notch-Signaling Pathway in regulating proliferative, neuroprotective and regenerative properties of Müller glia and bestow them with this plasticity. -
The Effect of Retinal Ganglion Cell Injury on Light-Induced Photoreceptor Degeneration
The Effect of Retinal Ganglion Cell Injury on Light-Induced Photoreceptor Degeneration Robert J. Casson,1 Glyn Chidlow,1 John P. M. Wood,1 Manuel Vidal-Sanz,2 and Neville N. Osborne1 PURPOSE. To determine the effect of optic nerve transection photoreceptors against light-induced injury. An unusual aspect (ONT) and excitotoxic retinal ganglion cell (RGC) injury on of the ONT-induced photoreceptor protection is that it specif- light-induced photoreceptor degeneration. ically affects the retinal ganglion cells (RGCs), yet subsequently METHODS. Age- and sex-matched rats underwent unilateral ONT protects the outer retina. This phenomenon implies the exis- D tence of retrograde communication systems within the retina, or received intravitreal injections of N-methyl- -aspartate 5,6 (NMDA). The fellow eye received sham treatment, and 7 or 21 possibly involving Mu¨ller cells and FGF-2, but does not days later each eye was subjected to an intense photic injury. exclude the possibility that the effect is specific to ONT. A Maximum a- and b-wave amplitudes of the flash electroretino- nonspecific effect would suggest that similar responses might gram (ERG) were measured at baseline, after the RGC insult, be occurring in a wide range of optic neuropathies. We hy- and 5 days after the photic injury. Semiquantitative reverse pothesized that the protective effect of ONT may be a gener- transcription-polymerase chain reaction analysis and immuno- alizable effect and that other forms of inner retinal injury such blot analysis were used to assess rod opsin mRNA and rhodop- as excitotoxic injury may also protect against LIPD. Further- sin kinase protein levels and to measure defined trophic factors more, although FGF-2 has been implicated as the agent respon- 7 or 21 days after ONT or injection of NMDA. -
Anatomy and Physiology of the Afferent Visual System
Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes. -
Specialized Cilia in Mammalian Sensory Systems
Cells 2015, 4, 500-519; doi:10.3390/cells4030500 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Specialized Cilia in Mammalian Sensory Systems Nathalie Falk, Marlene Lösl, Nadja Schröder and Andreas Gießl * Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; E-Mails: [email protected] (N.F.); [email protected] (M.L.); [email protected] (A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-9131-85-28055; Fax: +49-9131-85-28060. Academic Editors: Gang Dong and William Tsang Received: 18 May 2015 / Accepted: 9 September 2015 / Published: 11 September 2015 Abstract: Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies. -
Imaging and Quantifying Ganglion Cells and Other Transparent Neurons in the Living Human Retina
Imaging and quantifying ganglion cells and other transparent neurons in the living human retina Zhuolin Liua,1, Kazuhiro Kurokawaa, Furu Zhanga, John J. Leeb, and Donald T. Millera aSchool of Optometry, Indiana University, Bloomington, IN 47405; and bPurdue School of Engineering and Technology, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202 Edited by David R. Williams, University of Rochester, Rochester, NY, and approved October 18, 2017 (received for review June 30, 2017) Ganglion cells (GCs) are fundamental to retinal neural circuitry, apoptotic GCs tagged with an intravenously administered fluores- processing photoreceptor signals for transmission to the brain via cent marker (14), thus providing direct monitoring of GC loss. The their axons. However, much remains unknown about their role in second incorporated adaptive optics (AO)—which corrects ocular vision and their vulnerability to disease leading to blindness. A aberrations—into SLO sensitive to multiply-scattered light (12). major bottleneck has been our inability to observe GCs and their This clever combination permitted imaging of a monolayer of GC degeneration in the living human eye. Despite two decades of layer (GCL) somas in areas with little or no overlying nerve fiber development of optical technologies to image cells in the living layer (NFL) (see figure 5, human result of Rossi et al.; ref. 12). By human retina, GCs remain elusive due to their high optical trans- contrast, our approach uses singly scattered light and produces lucency. Failure of conventional imaging—using predominately sin- images of unprecedented clarity of translucent retinal tissue. This gly scattered light—to reveal GCs has led to a focus on multiply- permits morphometry of GCL somas across the living human ret- scattered, fluorescence, two-photon, and phase imaging techniques ina. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Department of Neural and Behavioral Sciences A REGENERATIVE RESPONSE OF ENDOGENOUS NEURAL STEM CELLS TO PERINATAL HYPOXIC/ISCHEMIC BRAIN DAMAGE A Thesis in Neuroscience by Ryan J. Felling © 2006 Ryan J. Felling Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2006 ii The thesis of Ryan J. Felling was reviewed and approved* by the following: Steven W. Levison Professor of Neurology and Neurosciences Thesis Advisor Co-Chair of Committee Teresa L. Wood Associate Professor of Neural and Behavioral Sciences Co-Chair of Committee Sarah K. Bronson Assistant Professor of Cell and Molecular Biology Charles Palmer Professor of Pediatrics James R. Connor Professor and Vice-Chair Department of Neurosurgery; Director, G.M. Leader Family Laboratory for Alzheimer's Disease Research Robert J. Milner Professor of Neural and Behavioral Sciences Head of Neuroscience Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Hypoxic/ischemic (H/I) insults are the leading cause of neurologic injury during the perinatal period, affecting 2-4 per 1000 term births as well as a high percentage of premature infants. The ensuing sequelae are devastating and include cerebral palsy, epilepsy and cognitive deficits. Despite astounding advances in perinatal care, the incidence of cerebral palsy has changed little over the last 50 years. This demands that we pursue alternative therapeutic strategies that will reduce the significant morbidity associated with perinatal H/I encephalopathy. The revelation that the brain retains populations of neural stem cells throughout life offers the promise of endogenous regeneration following brain injury.