A Review of Feeding Mechanism and Nutrient Recycling

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Feeding Mechanism and Nutrient Recycling REVIEWS Bivalve Mariculture in Two – Way Interaction with Phytoplankton: A Review of Feeding Mechanism and Nutrient Recycling 1 2 3 Rasheed1Department Olatunji of Fisheries MORUF and*, Gabriel Aquaculture, Femi OKUNADE Bayero University,, Owoyemi Kano, Wahab Kano ELEGBELEYE State, Nigeria 2Department of Biological Sciences, Yaba College of Technology, Lagos State, Nigeria 3Department of Marine Sciences, University of Lagos, Akoka, Lagos State, Nigeria *corresponding author: [email protected] Bulletin UASVM Animal Science and Biotechnologies 77(2)/2020 ISSN-L 1843-5262; Print ISSN 1843-5262; Electronic ISSN 1843-536X DOI:10.15835/buasvmcn-asb: 2020.0010 Abstract Bivalve mariculture is a type of molluscan farming done in open seawater on racks, rafts or longlines where naturally occurring phytoplankton serves as a key food item, introduced into the enclosures with the normal circulation of seawater. Increasingly, the reverse trophic interaction is being recognized; dissolved inorganic and organic waste compounds released by metabolically active bivalves can supply phytoplankton with nutrient and energy requirements for their growth. This two-way interaction can be viewed as a type of community symbiosis developed over long evolutionary timescales. The extent to which this affects overall nutrient budgets and thus primary production is related to the system flushing rate and residence time. Here we reviewed the feeding mechanism and nutrient recycling activities of bivalve and also emphasized the role of phytoplankton as a key nutritional live feed in sustainable bivalve mariculture. Bivalves influence nutrient dynamics through direct excretion and indirectly through microbial mediated remineralisation of their organic deposits in the sediments. The quantitative knowledge of bivalve - phytoplankton trophic interactions in coastal waters will inform bivalve maricultureKeywords: development to effectively, serve the needs of both seafood production and ecosystem restoration. bottom-feeder food web, microalgae, mollusc farming, symbiosis. Introduction in coastal and offshore waters where salinity is Mollusks are important resources that maximal and not subject to significant daily or contribute considerable economic value to the seasonal variation. Mariculture has more recently world’s fisheries. The global production of marine become an important source of bivalve, which is mollusk for human consumption is more than 17 the focus of this review. million tonnes in the year 2018, with China as the Bivalves as a group have noet alhead and they major producer with relatively highest percentage lack some usual molluscan organs like the radula of production (FAO, 2020). In terms of mariculture and the odontophore (Romano ., 2014). They (disregarding freshwater production), mollusc include the clams, oysters, cockles, mussels, production exceeds finfish production value by scallops, and numerous other families that live underover 900-fold controlled (Mau or & semi Jha, 2018).controlled As acondition concept, in saltwater, as well as a number of families that mariculture is the rearing of aquatic organisms live in freshwater. Bivalve mariculture is a type of molluscan farming done in open seawater 2 and al. MORUF on racks, rafts or longlines. The commercial fast rate of primary production (Gao & Campbell, importance of bivalve mariculture include but 2014). Phytoplankton are the autotrophic (self- not limited to food security, pearl production feeding) components of the plankton community Crassostreaand lime manufacture. madrasensis, As C. gryphoides,listed by Narasimham C. rivularis and a key part of oceans, seas and freshwater ba- and(2005), Saccostrea popular cucullata culture species of oysters include sin ecosystems. According to Pal and Choudhury are Perna viridis and P. indica (2014), phytoplankton are free-floating photo- clams are Villorita cyprinoids,; culture Paphia species malabarica, of mussel synthetic aquatic microorganisms, which move Meritrix casta and Anadara; culture granosa species of from one place to another, either actively by their Chlamys barrei, C. locomotor organs (flagella) or passively by water nobills, Placopecten magellanicus and Argopecten while currents. Today, the contribution of phytoplankton irradians.culture species of scallops are to the biosphere continues to be unique because this group largely contributes to the renewal of the atmospheric oxygen and acts as a tremendous 2 One of the factors that influence bivalve etsink al for CO , which is used for the synthesis of or- growth in both natural populations and maricul- ganic compounds through photosynthesis (Nelson ture conditions is availability and quality of food. ., 1995). While accounting for less than 1% of Traditionally, phytoplankton was considered as Earth’s biomass, et al. phytoplankton is responsible for primary food source for bivalves (Gosling, 2003). more than 50% annual net biomass production However, a number of studies pointed out that en- (Bowler , 2010). ergy is also derived from other food sources such Phytoplankton differentiate from other plan- as bacteria, detritus and even zooplankton (Le- ktonic taxa by the presence of photosynthetic hane & Davenport, 2006). Through filter feeding, mem branes. This makes them produce biomass bivalves play important role in marine ecosystems by autotrophically converting naturally occurring by controlling abundances of primary producers, carbon into protoplasm. In this way, phytoplankton zooplankton and larval stages of other marine function as the foundation of the marine food web species. By this process, bivalves haveet al. great influ- by supporting all other life in the ocean. Food webs ence in energy and nutrient flux between benthic are built from food chains. All forms of life in the and pelagic communities (Arapov , 2010). sea have the potential to become food for another The two-way interaction between bivalve life form. In the ocean, a food chain typically starts mariculture and phytoplankton fundamentally with energy from the sun powering phytoplankton, involve feeding and nutrient recycling activities and follows a course shown in Figure 1. of bivalve molluscs, which tend to sustain primary Phytoplankton community supports the base production locally. This paper aimed to give an of the natural food chain depending on which overview of current understanding on bivalve’s the natural fauna including the fish populations feeding mechanism and to emphasize the role can survive (Napiórkowska-Krzebietke, 2017). A of phytoplankton as a key nutritional live feed in simplified classical food web in an aquatic ecosys- bivalve mariculture, by reviewing the worldwide tem comprises phytoplankton as staple food for literature through Internet search engines, zooplankton, and further zooplankton as food textbooks and theses. Literatures obtained were for planktivorous fish, which in turn are food analyzedPhytoplankton in pros and as arelevant Basic Element cited figure in a and for predatory fish. A 2017 study estimated the headingsClassical were Food adopted. Web nutritional value of natural phytoplankton in terms of carbohydrate, protein and lipid across the world ocean using ocean-colour data from satellites, and Unlike terrestrial environments, marine en- found the calorific value of phytoplankton to vary vironments have biomass pyramids which are considerablyBiologically across Active different Ingredients oceanic of regions and inverted at the base. In particular, the biomasset al. of betweenPhytoplankton different times of the year (Roy, 2018). consumers (copepods, krill, bivalve) is larger than the biomass of primary producers (Arapov , 2010). This happens because the ocean’s primary Phytoplankton produce valuable compounds producers are tiny phytoplankton, which grow that include crucial phytonutrients and biological- Bulletinand reproduce UASVM Animal Sciencerapidly, and Biotechnologiesso a small 77(2)mass / 2020 can have a ly active ingredients, e.g. fatty acids, amino acids, 3 Bivalve Mariculture in Two – Way Interaction with Phytoplankton: A Review of Feeding Mechanism and Nutrient Recycling Figure 1. Summary of phytoplankton as a basic element in a classical food web Figure 2. Notable biomolecules from phytoplankton biomass carotenoids, chlorophyll, vitamins, antioxidants 2013). These bio-compounds play physiological (Figure 2). Thus, thorough nutritional and toxico- roles that allow cells to deal with changes of the logical investigations have validated the suitabilet al.- environmental constrains. For example, the diver- ity of algal biomass for use as a high-grade feed in sity of light-harvesting pigments allows efficient the production of bivalve molluscs (Kovač , Bulletin UASVM Animal Science and Biotechnologies 77 (2) / 2020 4 and al. MORUF et al. photosynthesis at different depths in the seawater pendent on both the energy status and the taxo- column (Heydarizadeh , 2013). nomic composition of the phytoplankton commu- Regarding lipids in aquatic ecosystems, phy- nity, with some microalgal classes being devoid of toplankton can predominantly synthesize poly- these compounds (e.g., chlorophytes have no PU- unsaturated fatty acids (PUFA), which in turn are etFAs al. longer than 18 carbons, but 20 - and 22 - car- mainly consumed by zooplankton and benthic bon FeedingPUFAs are Mechanism considered of to Bivalve be essential) (Kovač invertebrates. Different groups of phytoplankton , 2013). such as cryptophytes, diatoms, dinophytes and euglenophytes, can synthesize high amounts
Recommended publications
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Thyasira Succisa, Lyonsia Norwegica and Poromya Granulata in The
    Marine Biodiversity Records, page 1 of 4. # Marine Biological Association of the United Kingdom, 2015 doi:10.1017/S1755267215000287; Vol. 8; e47; 2015 Published online First record of three Bivalvia species: Thyasira succisa, Lyonsia norwegica and Poromya granulata in the Adriatic Sea (Central Mediterranean) pierluigi strafella, luca montagnini, elisa punzo, angela santelli, clara cuicchi, vera salvalaggio and gianna fabi Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Largo Fiera della Pesca, 2, 60125 Ancona, Italy Three species of bivalves, Thyasira succisa, Lyonsia norwegica and Poromya granulate, were recorded for the first time in the Adriatic Sea during surveys conducted from 2010 to 2012 on offshore relict sand bottoms at a depth range of 45–80 m. Keywords: Thyasira succisa, Lyonsia norwegica, Poromia granulata, Adriatic Sea, bivalvia Submitted 12 December 2014; accepted 8 March 2015 INTRODUCTION yet been formerly reported in the official checklist for the Italian marine faunal species for the Adriatic Sea Although species distribution changes over time, sudden (Schiaparelli, 2008). range extensions are often prompted by anthropic and The family Thyasiridea (Dall, 1900) includes 14 genera. natural causes. This may be direct, by the introduction of a The species belonging to this family have a small, mostly new species for a defined purpose (e.g. aquaculture) or indir- thin, light shell, with more or less marked plicae on the pos- ect (e.g. ballast water). Natural changes (e.g. global warming) terior end. The anterior margin is often flattened and the could also provide opportunities for species to colonize areas hinge is almost without teeth (Jeffreys, 1876; Pope & Goto, where, until recently, they were not able to survive (Kolar & 1991).
    [Show full text]
  • Patterns of Bathymetric Zonation of Bivalves in the Porcupine Seabight and Adjacent Abyssal Plain, NE Atlantic
    ARTICLE IN PRESS Deep-Sea Research I 52 (2005) 15–31 www.elsevier.com/locate/dsr Patterns of bathymetric zonation of bivalves in the Porcupine Seabight and adjacent Abyssal plain, NE Atlantic Celia Olabarriaà Southampton Oceanography Centre, DEEPSEAS Benthic Biology Group, Empress Dock, Southampton SO14 3ZH, UK Received 23 April2004; received in revised form 21 September 2004; accepted 21 September 2004 Abstract Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above 750 m marking the change from shelf species to bathyal species; (2) a zone from 750 to 1900 m that corresponds to the upper and mid- bathyalzones taken together; (3) a lowerbathyalzone from 1900 to 2900 m; (4) a transition zone from 2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyalspecies with very broad distributions.
    [Show full text]
  • Redalyc.New Geographic and Depth Records for Deep-Water Mollusks In
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Zamorano, Pablo; Hendrickx, Michel E.; Toledano Granados, Arturo New geographic and depth records for deep-water mollusks in the Gulf of California, Mexico Revista Mexicana de Biodiversidad, vol. 78, núm. 2, 2007, pp. 311-318 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42578208 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 78: 311- 318, 2007 New geographic and depth records for deep-water mollusks in the Gulf of California, Mexico Nuevos registros geográfi cos y batimétricos para moluscos de mar profundo en el golfo de California, México Pablo Zamorano1, Michel E. Hendrickx1* and Arturo Toledano-Granados2 1Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa 8200, México. 2Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México. *Correspondent: [email protected] Abstract. Six oceanographic cruises (Talud IV-IX) were made in the southern Gulf of California aboard the R/V El Puma of the Universidad Nacional Autónoma de México. A total of 56 species of deep-sea mollusks were identifi ed, of which 16 (13 Bivalvia, 2 Gastropoda, 1 Scaphopoda) represent either a new geographic or bathymetric record, or both.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Fabrizio Marcondes Machado
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA FABRIZIO MARCONDES MACHADO DESVENDANDO A DIVERSIDADE DOS ANOMALODESMATA (MOLLUSCA: BIVALVIA): UMA ABORDAGEM MORFOLÓGICA E FILOGENÉTICA UNRAVELLING THE DIVERSITY OF ANOMALODESMATA (MOLLUSCA: BIVALVIA): A MORPHOLOGICAL AND PHYLOGENETIC APPROACH Campinas 2018 FABRIZIO MARCONDES MACHADO DESVENDANDO A DIVERSIDADE DOS ANOMALODESMATA (MOLLUSCA: BIVALVIA): UMA ABORDAGEM MORFOLÓGICA E FILOGENÉTICA UNRAVELLING THE DIVERSITY OF ANOMALODESMATA (MOLLUSCA: BIVALVIA): A MORPHOLOGICAL AND PHYLOGENETIC APPROACH Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Biologia Animal na área de Biodiversidade Animal. Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Animal Biology in the area of Animal Biodiversity. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO FABRIZIO MARCONDES MACHADO E ORIENTADO PELO PROF. DR. FLÁVIO DIAS PASSOS. Orientador: Prof. Dr. Flávio Dias Passos Campinas 2018 Agência(s) de fomento e nº(s) de processo(s): CAPES ORCID: https://orcid.org/0000-0002-5085-865X Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Machado, Fabrizio Marcondes, 1984- M18d Desvendando a diversidade dos Anomalodesmata (Mollusca: Bivalvia) : uma abordagem morfológica e filogenética / Fabrizio Marcondes Machado. – Campinas, SP : [s.n.], 2018. Orientador: Flávio Dias Passos. Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Bivalve. 2. Microtomografia por raio-X. 3. Filogenia. 4. Anatomia. 5. Molusco. I. Passos, Flávio Dias, 1971-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Florida Keys Species List
    FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.
    [Show full text]
  • Quaternary Micromolluscan Fuana of the Mudlump Province, Mississippi River Delta
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 Quaternary Micromolluscan Fuana of the Mudlump Province, Mississippi River Delta. James Xavier Corgan Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Corgan, James Xavier, "Quaternary Micromolluscan Fuana of the Mudlump Province, Mississippi River Delta." (1967). LSU Historical Dissertations and Theses. 1286. https://digitalcommons.lsu.edu/gradschool_disstheses/1286 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. I This dissertation has been microfilmed exactly aa received CORGAN, James Xavier, 1930- QUATERNARY MICROMOLLUSCAN FAUNA OF THE MUDLUMP PROVINCE, MISSISSIPPI RIVER DELTA. Louisiana State University and Agricultural and Mechanical College, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan JAMES XAVIER CQRGAN 1Q£7 All Rights Reserved QUATERNARY MICROMOLLUSC AN FAUNA OF THE MUDLUMP PROVINCE, MISSISSIPPI RIVER DELTA A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology James X^Corgan B.A., New York University, 1955 M.A., Columbia University, 1957 June, 1967 ACKNOWLEDGMENTS Continuing aid and encouragement from Dr. Alan H. Cheetham and Dr. James P. Morgan made th is dissertation possible. Research was directed by Dr. Cheetham and essentially completed during his tenure as Associate Professor of Geology, Louisiana State University.
    [Show full text]