Growth and Characterization of Ce Doped Luag Single Crystal Fibers by the Micropulling Down Technique Sara Faraj
Total Page:16
File Type:pdf, Size:1020Kb
Growth and characterization of Ce doped LuAG single crystal fibers by the micropulling down technique Sara Faraj To cite this version: Sara Faraj. Growth and characterization of Ce doped LuAG single crystal fibers by the micropulling down technique. Materials. Université de Lyon, 2017. English. NNT : 2017LYSE1030. tel-01537698 HAL Id: tel-01537698 https://tel.archives-ouvertes.fr/tel-01537698 Submitted on 12 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2016LYSE1030 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 34 (Matériaux) Spécialité de doctorat : Matériaux Discipline : Matériaux Soutenue publiquement/à huis clos le 02/03/2017, par : (Sara FARAJ) Growth and characterization of Ce doped LuAG single crystal fibers by the micro- pulling down technique Devant le jury composé de : BRIOUDE Arnaud Professeur des universités Université Lyon 1 Président JUILLAGUET Sandrine Maître de conférences Université de Montpellier Rapporteure CHAUSSENDE Didier Directeur de recherche CNRS Grenoble Rapporteur AUFFRAY Etiennette Chercheur CERN Suisse Examinatrice FERRO Gabriel Directeur de recherche CNRS Université Lyon 1 Directeur de thèse AUBRY Nicolas Chef de projet Fibercryst S.A.S Co-directeur de thèse Année 2017 Année 2017 Growth and characterization of Ce doped LuAG single crystal fibers by the micro- pulling down technique Sara FARAJ DISSERTATION SUBMITTED TO THE UNIVERSITÉ CLAUDE BERNARD LYON 1 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATERIAL SCIENCE Supervisor: Gabriel FERRO Co-supervisor: Nicolas AUBRY Jury: M. Arnaud BRIOUDE President Mme. Sandrine JUILLAGUET Reporter M. Didier CHAUSSENDE Reporter Mme. Etiennette AUFFRAY Examiner M. Gabriel FERRO Thesis supervisor M. Nicolas AUBRY Co-supervisor Année 2017 Thesis contents Acknowledgement ....................................................................................................................... VI Abstract .......................................................................................................................................VII Résumé .. ................................................................................................................................... VIII Chapter I 1. Introduction to the history of scintillation discovery ......................................................... 2 2. Types of Scintillators ............................................................................................................. 6 3. Fundamentals of the Scintillation mechanism in Inorganic Scintillators ........................ 8 4. Desirable physical and luminescent characteristics of the Ideal Scintillator................. 13 4.1 Physical characteristics ..................................................................................................... 14 4.2 Luminescent characteristics .............................................................................................. 15 5. Introduction to crystals and the different crystal growth techniques from the melt .... 18 5.1 The Verneuil growth method ............................................................................................ 20 5.3 The Czochralski technique ................................................................................................ 23 5.4 Liquid encapsulated Czochralski (LEC) ........................................................................... 24 5.5 The Kyropoulos ................................................................................................................ 25 6. Single crystal growth in the form of fibers ........................................................................ 25 6.1 Micro floating zone methods ............................................................................................ 26 I 6.1.1 The Float Zone (FZ) ..................................................................................................... 26 6.1.2 Laser heated pedestal growth (LHPG) ......................................................................... 27 6.2 Pulling techniques from a die (Upward pulling from a meniscus shaper) ........................ 28 6.2.1 Edge defined Film-fed Growth (EFG) ......................................................................... 28 6.2.2 Micro-Czochralski (μ-Cz) ............................................................................................ 29 6.3 Pulling down from a meniscus shaper (Micro-pulling-down (μ-PD) technique 30 7. Conclusion ............................................................................................................................ 33 8. Scope of this thesis ............................................................................................................... 35 9. References ............................................................................................................................ 37 Chapter II 1. Micro-pulling-down growth ................................................................................................44 1.1 Capillary phenomenon before connection: .....................................................................44 1.2 Connection ......................................................................................................................48 1.3 Stability of the molten zone ............................................................................................49 1.4 Growth .............................................................................................................................52 1.4.1 Thermal exchanges .....................................................................................................52 1.4.2 Mass controlled connection and growth .....................................................................53 2. Inorganic Scintillating Fibers (advantages and common applications) ..........................54 3. Light Formation and Propagation in Scintillating Fibers ................................................56 4. Detecting and Characterizing Scintillation Light ..............................................................59 4.1 Photomultiplier tube ........................................................................................................60 II 4.1.1 Photocathode ...............................................................................................................60 4.1.2 Electron Multiplication ................................................................................................61 4.2 Silicon Photomultipliers ..................................................................................................61 5. Conclusion .............................................................................................................................62 6. References .............................................................................................................................64 Chapter III 1. Cerium doped LuAG fibers: Our choice of material ………………………………...67 1.1 Basic properties of Ce:LuAG ............................................................................................. 67 1.2 LuAG Cystal structure and Lu2O3-Al2O3 phase diagram .................................................. 68 1.3 Cerium incorporation in the host matrix LuAG ................................................................. 69 1.4 Our motivation: Fiber shaped Ce:LuAG crystals .............................................................. 70 2. Experimental part................................................................................................................ 72 2.1 Machine at Fibercryst ........................................................................................................ 72 2.2 Inner Parts .......................................................................................................................... 74 2.2.1 Crucibles and after-heaters ..................................................................................... 74 2.2.2 Thermal Shields ...................................................................................................... 75 2.2.3 Seeds ....................................................................................................................... 76 2.2.4 Raw materials.......................................................................................................... 77 2.3 General growth procedure .................................................................................................. 79 2.3.1 Preparation .............................................................................................................. 79 2.3.2 System Mounting .................................................................................................... 79 2.3.3 Getting Started ........................................................................................................ 79 2.3.3 Temperature Calibration .......................................................................................