Growth of Srb4o7 Crystal Fibers Along the C-Axis by Micro-Pulling-Down Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Growth and Characterization of Lif Single-Crystal Fibers by the Micro
ARTICLE IN PRESS Journal of Crystal Growth 270 (2004) 121–123 Growth and characterization of LiF single-crystal fibers by the micro-pulling-down method A.M.E. Santoa, B.M. Epelbaumb, S.P. Moratoc, N.D. Vieira Jr.a, S.L. Baldochia,* a Instituto de Pesquisas Energeticas! e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, CEP 05508-900, Sao* Paulo, SP, Brazil b Department of Materials Science, University of Erlangen-Nurnberg, D-91058, Erlangen, Germany c LaserTools Tecnologia Ltda., 05379-130,Sao* Paulo, SP, Brazil Accepted 27 May 2004 Available online 20 July 2004 Communicated by G. Muller. Abstract Good optical quality LiF single-crystalline fibers ranging from 0:5to0:8 mm in diameter and 100 mm in length were successfully grown by the micro-pulling-down technique in the resistive mode. A commercial equipment was modified in order to achieve suitable conditions to grow fluoride single-crystalline fibers. r 2004 Elsevier B.V. All rights reserved. PACS: 81.10.Fq; 78.20.Àe Keywords: A2. Micro-pulling-down method; A2. Single crystal growth; B1. Fluorides 1. Introduction oxide single-crystals have already been grown by the laser heated pedestal growth (LHPG) [2] and There is an increasinginterest in the production by the micro-pulling-down (m-PD) [3] methods. of single-crystalline fibers. Their unique properties However, the growth and hence the possible indicate their use for production of a variety of applications of fluoride single-crystalline fibers optical and electronic devices [1]. The final shape has not yet been investigated. of the single-crystalline fiber is already in a form As it is already known from other methods of suitable for optical testingand applications, fluoride growth, these materials are very sensitive reducingthe time and cost of preparation. -
Development Team
Material science Paper No. : Crystallography & crystal growth Module : Growth from melt II Development Team Prof. Vinay Gupta, Department of Physics and Astrophysics, Principal Investigator University of Delhi, Delhi Prof. P. N. Kotru ,Department of Physics, University of Jammu, Paper Coordinator Jammu-180006 Content Writer Prof. P. N. Kotru ,Department of Physics, University of Jammu, Jammu-180006 Prof Mahavir Singh Department of Physics, Himachal Pradesh Content Reviewer University, Shimla 1 Crystallography & crystal growth Material science Growth from melt II Description of Module Subject Name Physics Paper Name Crystallography & crystal growth Module Name/Title Growth from melt II Module Id 31 2 Crystallography & crystal growth Material science Growth from melt II 31 Bridgman-Stockbarger Growth Technique. 31.1 Introduction The techniques were originated by Bridgman (1925) and Stockbarger (1938) and so are named after them. In these techniques a crucible containing the material to be grown is lowered through a furnace in such a way that the lowest point in the crucible and the solidification surface rises slowly up the crucible. It means that the melt contained in the crucible is progressively frozen to yield a single crystal. The rate of lowering the crucible may range from about 0.1 to 200 mmh─1 but in most of the cases it may range somewhere in between 1-30 mmh─1. There are situations where the movement of the crucible is reversed. In other words, the crucible is raised up through the furnace and so is advantageously applicable for materials which are volatile; the interface with the vapour being the coolest part of the charge. -
Single Crystal Growth for Topology and Beyond Chandra Shekhar#, Horst Borrmann, Claudia Felser, Guido Kreiner, Kaustuv Manna, Marcus Schmidt, and Vicky Sü
CHEMICAL METALS SCIENCE & SOLID STATE CHEMISTRY Single crystal growth for topology and beyond Chandra Shekhar#, Horst Borrmann, Claudia Felser, Guido Kreiner, Kaustuv Manna, Marcus Schmidt, and Vicky Sü Single crystals are the pillars for many technological advancements, which begin with acquiring the material. Since different compounds have different physical and chemical properties, different techniques are needed to obtain their single crystals. New classes of quantum materials, from insulators to semimetals, that exhibit non-trivial topologies, have been found. They display a plethora of novel phenomena, including topological surface states, new fermions such as Weyl, Dirac, or Majorana, and non-collinear spin textures such as antiskyrmions. To obtain the crystals and explore the properties of these families of compounds, it is necessary to employ different crystal growth techniques such as the chemical vapour transport method, Bridgman technique, flux growth method, and floating-zone method. For the last four years, we have grown more than 150 compounds in single crystal form by employing these methods. We sometimes go beyond these techniques if the phase diagram of a particular material allows it; e.g., we choose the Bridgman technique as a flux growth method. Before measuring the properties, we fully characterize the grown crystals using different characterization tools. Our TaAs family of crystals have, for the first time, been proven experimentally to exhibit Weyl semimetal properties. They exhibit extremely high magnetoresistance and mobility of charge carriers, which is indicative of the Weyl fermion properties. Moreover, a very large value of intrinsic anomalous Hall and Weyl physics with broken time-reversal symmetry is found in the full-Heuslers, while the half-Heuslers exhibit topological surface states. -
Project Title: Embedded Nanocrystal Silicon Films: a New Paradigm for Improving the Stability of Thin-Film Silicon
Suite 1000 ME 111 Church St. SE Minneapolis, MN 55455-0111 Project Title: Embedded Nanocrystal Silicon Films: A New Paradigm for Improving the Stability of Thin-film Silicon Contract Number: RD-3-25 Report Date: 16 Dec 2011 Principal Investigator: Uwe Kortshagen Contract Contact: Amy Rollinger 612-625-4028 612-625-1359 Congressional District: (Corporate office) Minnesota 5th Congressional District: (Project location) Minnesota 5th FINAL REPORT Executive Summary: Under this grant, we pursued two different routes that may help increase the efficiency and lower the cost of thin film silicon solar cells. Our first approach (Track 1) is based on our unique ability to produce silicon nanocrystals in a low-pressure plasma-based synthesis reactor and to embed these nanocrystals in amorphous silicon films. Our novel deposition process enables us to independently control the properties of the amorphous matrix and of the crystalline phase, which we hope will enable us to improve the electronic quality of amorphous silicon that is used in thin film solar cells. In the second approach (Track 2), we study using such embedded nanocrystals as nuclei for seed-induced re-crystallization of amorphous silicon films. We expected that controlling the seed concentration will enable us to grow microcrystalline Si films faster and with grain sizes larger than possible with other deposition approaches. This may enable the cheaper production of solar cells based on microcrystalline silicon. The goals and objectives of this grant were achieved. This research led to two major conclusions: 1. The inclusion of Si nanocrystals into amorphous silicon leads to a mixed phase material that is more resistive to light-induced defect creation than standard amorphous silicon. -
Solid-Phase Epitaxy
Published in Handbook of Crystal Growth, 2nd edition, Volume III, Part A. Thin Films and Epitaxy: Basic Techniques edited by T.F. Kuech (Elsevier North-Holland, Boston, 2015) Print book ISBN: 978-0-444-63304-0; e-book ISBN: 97800444633057 7 Solid-Phase Epitaxy Brett C. Johnson1, Jeffrey C. McCallum1, Michael J. Aziz2 1 SCHOOL OF PHYSICS, UNIVERSITY OF MELBOURNE, VICTORIA, AUSTRALIA; 2 HARVARD SCHOOL OF ENGINEERING AND APPLIED SCIENCES, CAMBRIDGE, MA, USA CHAPTER OUTLINE 7.1 Introduction and Background.................................................................................................... 318 7.2 Experimental Methods ............................................................................................................... 319 7.2.1 Sample Preparation........................................................................................................... 319 7.2.1.1 Heating.................................................................................................................... 321 7.2.2 Characterization Methods................................................................................................ 321 7.2.2.1 Time-Resolved Reflectivity........................................................................................ 321 7.2.2.2 Other Techniques ....................................................................................................323 7.3 Solid-Phase Epitaxy in Si and Ge .............................................................................................. 323 7.3.1 Structure -
Synthetic Quartz Crystal
Synthetic Quartz Crystal n Terms and Definitions Synthetic Quartz Crystal: A single crystal grown using the Right-handed and left-handed quartz crystals: Crystals are hydrothermal synthesis method. divided into two types: right-handed and left-handed. A As-Grown Quartz Crystal: A synthetic quartz crystal grown difference in optical rotation creates the 2 types, but their naturally with no processing. physical properties are identical. Therefore, by cutting at the Lumbered Quartz Crystal: A synthetic quartz crystal with the X correct angle, the difference does not affect the characteristics and Z surfaces processed according to specified dimensions of a crystal oscillator. Generally right-handed quartz crystals are and angles using a diamond wheel #80. used in manufacture. Y-bar Synthetic Quartz Crystal: A synthetic quartz crystal grown Zone: A zone with a crystal that has grown from a seed crystal at by using a bar-like seed crystal elongated in the Y-axis direction. its core. There are Z, +X, -X, and S zones. Z-plate Synthetic Quartz Crystal: A synthetic quartz crystal Infrared Absorption Coefficient α: This value measured with an grown by using a plate-like seed crystal with a Y-axis direction infrared spectrophotometer is adopted as the infrared absorption length and X-axis direction width. coefficient α of a synthetic quartz crystal. The value is based on Inclusion: A general term for solid constituents (inclusions) that the absorption characteristic of the OH radical of a synthetic exist in synthetic quartz crystal; they can be observed when light quartz crystal that is around 3,800 to 3,000 cm–1 of the infrared is scattered through a liquid with a refractive index that is close transmittance curve. -
INTERNSHIP REPORT Single Crystal Growth of Constantan by Vertical
INTERNSHIP REPORT Single Crystal Growth of Constantan by Vertical Bridgman Method Supervisor: Prof. Henrik Rønnow Laboratory for Quantum Magnetism (LQM) Rahil H. Bharani 08D11004 Third year Undergraduate Metallurgical Engineering and Materials Science IIT Bombay May – July 2011 ACKNOWLEDGEMENT I thank École Polytechnique Fédérale de Lausanne (EPFL) and Prof. Henrik Rønnow, my guide, for having me as an intern here. I have always been guided with every bit of help that I could possibly require. I express my gratitude to Prof. Daniele Mari, Iva Tkalec and Ann-Kathrin Maier for helping me out with my experimental runs and providing valuable insights on several aspects of crystal growth related to the project. I thank Julian Piatek for his help in clearing any doubts that I have had regarding quantum magnetism pertaining to understanding and testing the sample. I am indebted to Neda Nikseresht and Saba Zabihzadeh for teaching me to use the SQUID magnetometer, to Nikolay Tsyrulin for the Laue Camera and Shuang Wang at PSI for the XRF in helping me analyse my samples. I thank Prof. Enrico Giannini at the University of Geneva for helping me with further trials that were conducted there. Most importantly, I thank Caroline Pletscher for helping me with every little thing that I needed and Caroline Cherpillod, Ursina Roder and Prof Pramod Rastogi for co-ordinating the entire internship program. CONTENTS INTRODUCTION REQUIREMENTS OF THE SAMPLE SOME METHODS TO GROW SINGLE CRYSTALS • CZOCHRALSKI • BRIDGMAN • FLOATING ZONE TESTING THE SAMPLES • POLISH AND ETCH • X-RAY DIFFRACTION • LAUE METHOD • SQUID • X-RAY FLUORESCENCE THE SETUP TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4 Setup, observations, results and conclusions. -
Growth of Piezoelectric Crystals by Czochralski Method D
Growth of piezoelectric crystals by Czochralski method D. Cochet-Muchy To cite this version: D. Cochet-Muchy. Growth of piezoelectric crystals by Czochralski method. Journal de Physique IV Proceedings, EDP Sciences, 1994, 04 (C2), pp.C2-33-C2-45. 10.1051/jp4:1994205. jpa-00252473 HAL Id: jpa-00252473 https://hal.archives-ouvertes.fr/jpa-00252473 Submitted on 1 Jan 1994 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C2, supplBment au JournaI de Physique 111, Volume 4, fkvrier 1994 Growth of piezoelectric crystals by Czochralski method D. COCHET-MUCHY Crismatec, Usine de Gikres, 2 me des Essarts, 386610 Gi.?res, France Abstract : The Czochralski method is one of the most widely used industrial technique to grow single-crystals, since it applies to a very large range of compounds, such as semiconductors, oxides, fluorides, etc... Many exhibit piezoelectric properties and some of them find applications in Surface-Acoustic-Waves or Bulk- Acoustic-Waves devices. That explains the large amount of work made on the development of the corresponding growth processes and the high levels of production achieved in the world today. -
Crystal Shape Engineering
Crystal Shape Engineering Michael A. Lovette, Andrea Robben Browning, Derek W. Gri±n, Jacob P. Sizemore, Ryan C. Snyder and Michael F. Doherty¤ Department of Chemical Engineering University of California Santa Barbara, CA 93106-5080 USA June 19, 2008 Abstract In an industrial crystallization process, crystal shape strongly influences end-product quality and functionality as well as downstream processing. Additionally, nucleation events, solvent e®ects and polymorph selection play critical roles in both the design and operation of a crystallization plant and the patentability of the product and process. Therefore, investigation of these issues with respect to a priori prediction is and will continue to be an important avenue of research. In this review, we discuss the state-of-the-art in modeling crystallization processes over a range of length scales relevant to nucleation through process design. We also identify opportunities for continued research and speci¯c areas where signi¯cant advancements are needed. ¤To whom correspondence should be addressed. Phone: (805) 893{5309 e{mail: [email protected] 1 Introduction Crystallization from solution is a process used in the chemical industries for the preparation of many types of solids (e.g., pharmaceutical products, chemical intermediates, specialty chemicals, catalysts). Several key properties of the resultant materials originate from this process, including chemical purity and composition, internal structure (polymorphic state), size and shape distribu- tions and defect density (crystallinity). Size and shape distributions impact various solid properties including end-use e±cacy (e.g., bioavailability for pharmaceuticals, reactivity for catalytics1), flowa- bility, wettability and adhesion. In turn, these properties impact down-stream processing e±ciency (e.g., ¯ltering/drying times and the possible need for milling), storage and handling. -
Crystal Growth of Eu:Sri2 Single Crystals by Micro-Pulling-Down Method and the Scintillation Properties
Journal of Crystal Growth 375 (2013) 49–52 Contents lists available at SciVerse ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Crystal growth of Eu:SrI2 single crystals by micro-pulling-down method and the scintillation properties Yuui Yokota a,c,n, Kei Nishimoto a,c, Shunsuke Kurosawa a,c, Daisuke Totsuka a,b,c, Akira Yoshikawa a,b,c a Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan b Nihon Kessho Kogaku Corporation, 810-5 Nobe-cho, Tatebayashi, Gunma 974-0047, Japan c New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan article info abstract Article history: Undoped and Eu doped SrI2 (Eu:SrI2) single crystals were grown by the modified micro-pulling-down Received 21 September 2012 (μ-PD) method and their scintillation properties were investigated. Undoped and Eu:SrI2 single crystals Received in revised form with Eu 1%, 2%, 3% and 5% concentrations were obtained by the modified μ-PD method with the 26 March 2013 removable chamber system and their crystals with approximately 2 mm diameter and 2–3 cm length Accepted 27 March 2013 indicated high transparency. Powder X-ray diffraction patterns of grown Eu:SrI crystals revealed that the Communicated by R.S. Feigelson 2 Available online 8 April 2013 Eu:SrI2 crystals had a single phase of SrI2 structure and similar lattice parameters regardless of Eu concentrations. In the X-ray radioluminescence spectrum of Eu:SrI2 crystal, the emission peak around Keywords: 430 nm which was due to the 5d–4f transition of Eu2+ ion was observed. -
Quinquephenyl Crystals on a Cu(110)-(21)O Surface
crystals Article Epitaxial Order Driven by Surface Corrugation: Quinquephenyl Crystals on a Cu(110)-(2×1)O Surface Roland Resel 1,* , Markus Koini 1, Jiri Novak 2 , Steven Berkebile 3, Georg Koller 3 and Michael Ramsey 2,* 1 Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria 2 Department of Condensed Matter Physics, Masaryk University, 611 37 Brno, Czech Republic 3 Institut für Physik, Karl-Franzens Universität Graz, Universitätsplatz 5, 8010 Graz, Austria * Correspondence: [email protected] (R.R.); [email protected] (M.R.) Received: 14 June 2019; Accepted: 16 July 2019; Published: 22 July 2019 Abstract: A 30 nm thick quinquephenyl (5P) film was grown by molecular beam deposition on a Cu(110)(2 1)O single crystal surface. The thin film morphology was studied by light microscopy × and atomic force microscopy and the crystallographic structure of the thin film was investigated by X-ray diffraction methods. The 5P molecules crystallise epitaxially with (201)5P parallel to the substrate surface (110)Cu and with their long molecular axes parallel to [001]Cu. The observed epitaxial alignment cannot be explained by lattice matching calculations. Although a clear minimum in the lattice misfit exists, it is not adapted by the epitaxial growth of 5P crystals. Instead the formation of epitaxially oriented crystallites is determined by atomic corrugations of the substrate surface, such that the initially adsorbed 5P molecules fill with its rod-like shape the periodic grooves of the substrate. Subsequent crystal growth follows the orientation and alignment of the molecules taken within the initial growth stage. -
Growth from Melt by Micro-Pulling Down (Μ-PD) and Czochralski (Cz)
Growth from melt by micro-pulling down (µ-PD) and Czochralski (Cz) techniques and characterization of LGSO and garnet scintillator crystals Valerii Kononets To cite this version: Valerii Kononets. Growth from melt by micro-pulling down (µ-PD) and Czochralski (Cz) techniques and characterization of LGSO and garnet scintillator crystals. Theoretical and/or physical chemistry. Université Claude Bernard - Lyon I, 2014. English. NNT : 2014LYO10350. tel-01166045 HAL Id: tel-01166045 https://tel.archives-ouvertes.fr/tel-01166045 Submitted on 22 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre Année 2014 THESE DE L‘UNIVERSITE DE LYON Délivrée par L’UNIVERSITE CLAUDE BERNARD LYON 1 ECOLE DOCTORALE Chimie DIPLOME DE DOCTORAT (Arrêté du 7 août 2006) Soutenue publiquement le 15 décembre 2014 par VALERII KONONETS Titre Croissance cristalline de cristaux scintillateurs de LGSO et de grenats à partir de l’état liquide par les techniques Czochralski (Cz) et micro-pulling down (μ-PD) et leurs caractérisations Directeur de thèse : M. Kheirreddine Lebbou Co-directeur de thèse : M. Oleg Sidletskiy JURY Mme Etiennette Auffray Hillemans Rapporteur M. Alain Braud Rapporteur M. Alexander Gektin Examinateur M.