Description, Life History, and Parasitism of a New Species of Delphacid Planthopper (Hemiptera: Fulgoroidea)

Total Page:16

File Type:pdf, Size:1020Kb

Description, Life History, and Parasitism of a New Species of Delphacid Planthopper (Hemiptera: Fulgoroidea) SYSTEMATICS Description, Life History, and Parasitism of a New Species of Delphacid Planthopper (Hemiptera: Fulgoroidea) 1 2 JAMES T. CRONIN AND STEPHEN W. WILSON Ann. Entomol. Soc. Am. 100(5): 640Ð648 (2007) ABSTRACT Delphacodes scolochloa Cronin & Wilson (Hemiptera: Fulgoroidea) is a newly discov- ered delphacid planthopper that feeds and oviposits exclusively on the stems of sprangletop, Scolochloa festucacea (Willd.) Link (Poaceae: Pooidae), in the prairie pothole region of northeastern North Dakota. D. scolochloa is bivoltine. It is also wing dimorphic, but populations are composed predom- inantly of ßightless brachypters. Macropters incur a substantial cost in terms of reduced longevity and fecundity relative to brachypters. The parasitoid complex attacking D. scolochloa consists of two egg parasitoids, Anagrus nigriventris Girault and Anagrus columbi Perkins (Hymenoptera: Mymaridae), and one undescribed dryinid. The proportion of eggs parasitized averages 21%, and egg parasitization is density independent. KEY WORDS Anagrus nigriventris, egg parasitoid, planthopper, prairie potholes, Scolochloa festucacea Grass-feeding delphacids have been the subject of ex- L. (Kiritani 1979, Wilson and Claridge 1985). These tensive ecological research, primarily because several delphacids also serve as hosts to mymarid, strep- species are vectors of pathogens of economically impor- sipteran, and dryinid parasitoids, an assemblage of tant grasses (Wilson 2005). In North American grass- parasitoids very comparable to that found for many lands and salt marshes, researchers have focused on fau- planthopper pest species (e.g., Oˆ take 1970, Bentur et nal surveys (e.g., Hendrickson, 1930, Wilson et al. 1993, al. 1982, Fowler et al. 1991). The study of hostÐpara- Hamilton 2002), systematics and morphology (e.g., Wil- sitoid interactions in species of grassland delphacids son 1982, Miller and Wilson 1999), life histories (e.g., may provide insight or potential biocontrol agents for Holder and Wilson 1992), and mating behavior (e.g., the suppression of related pest species. Heady and Denno 1991, Heady and Wilson 1990). Del- Here, we describe a new species of delphacid pl- phacids also have been used to address a broad range of anthopper and provide data on its biology, host range, ecological questions regarding plantÐherbivore interac- rate of macroptery, and population dynamics. We also tions (e.g., Tallamy and Denno 1979, Denno 1983, Denno identify the parasitoid species that attack the plan- et al. 1986, Wilson et al. 1994), life history theory (e.g., thopper, quantify rates of parasitism, and test whether Denno and Dingle 1981, Denno and McCloud 1985, the proportion parasitized among host plant patches Huberty and Denno 2006), population dynamics (e.g., depends on host density. Denno 1983, Strong 1989, Reeve et al. 1994), interspeciÞc competition (Denno and Roderick 1992, Denno et al. Materials and Methods 2000, Ferrenberg and Denno 2003), predatorÐprey in- teractions (Do¨bel and Denno 1994, Cronin et al. 2004, Study Location and Host Plant. Collection of spec- Fagan and Denno 2004), hostÐparasitoid interactions imens and census of planthopper and parasitoid pop- (e.g., Stiling and Strong 1982; Cronin and Strong 1990, ulations occurred in the prairie pothole region of 1993, 1999; Cronin 2003b), food web structure (e.g., northeastern North Dakota (Petersburg, Nelson Denno et al. 2002, Finke and Denno 2003, Gratton and County; 48.02097Њ N, 98.12230Њ W). This formerly gla- Denno 2003), dispersal and metapopulation dynamics ciated area is characterized by numerous seasonal and (Cronin 2003a, Haynes and Cronin 2006), and landscape permanent ponds (van der Valk 1989), and it is an ecology (Haynes and Cronin 2003, 2006; Cronin and important breeding habitat for waterfowl (Batt et al. Haynes 2004). 1989). Among the wetland plants bordering these Some grass-feeding delphacids are ecologically sim- ponds is the native sprangletop or common river grass, ilar to pests such as the brown planthopper, Nilapar- Scolochloa festucacea (Willd.) Link (Poaceae: Pooi- vata lugens (Stål.), a serious pest of rice, Oryza sativa dae). Sprangletop is circumpolar in distribution and in North America ranges from northern Iowa and Ne- 1 Corresponding author: Department of Biological Sciences, braska to southcentral Canada and west to Oregon Louisiana State University, Baton Rouge, LA 70803 (e-mail: (Gould 1968, Clayton and Renvoize 1986). Ecologi- [email protected]). 2 Department of Biology, University of Central Missouri, Warrens- cally, it is an emergent hydrophyte, and it is found burg, MO 64093. where water levels ßuctuate from 0 to 150 cm above 0013-8746/07/0640Ð0648$04.00/0 ᭧ 2007 Entomological Society of America September 2007 CRONIN AND WILSON:BIOLOGY OF NEW SPECIES OF DELPHACID PLANTHOPPER 641 Fig. 1. D. scolochloa. (A) Adult brachypterous female with dryinid parasitoid sac. (B) Macropterous and brachypterous females. (C) Egg clusters on S. festucacea stems that have by parasitized by Anagrus spp. (plant epidermis has been removed to expose eggs in the upper egg cluster). the soil surface (Sculthorpe 1967). Sprangletop often Planthopper Taxonomy. The specimens collected forms pure stands several meters deep along the pond from S. festucacea represent a new species, and they margins and as small clonal patches further in open are described below. Descriptions are based on nine shallow water (Smith 1973; J.T.C., unpublished data). males and 34 females. Using an ocular micrometer, Population Census. Three semipermanent ponds, body length was measured from the apex of the vertex broadly bordered by sprangletop, were used in this to posterior aspect of the abdomen. Thoracic length study (Ponds 100, 109, and N29-1). The ponds were was measured along the midline from the anterior 1Ð3 ha in size and were separated from each other by aspect of the pronotum to the posterior aspect of the 1.8Ð5.6 km. Shortly after spring thaw, mid-May 1998, mesonotal scutellum as the metanotum is obscured by the sprangletop bordering each pond was sampled the forewings. To describe and illustrate the male and with a sweepnet. Three sets of 10 sweeps each were female genitalia, the abdomen was removed and conducted per pond. Sweep samples were transported placed in a 10% KOH solution overnight, then washed on ice to the laboratory, and planthoppers were in- in distilled water; genitalia were stored in genitalia spected to determine stage (nymph or adult), sex, capsules Þlled with glycerol (Wilson 2005). The ter- wing morph (brachypters versus macropters; Fig. 1, A minology used in describing the female genitalia fol- and B), and presence of parasitoids protruding from lows Heady and Wilson (1990). between the abdominal segments (dryinid larval sac Host Range of D. scolochloa. To ascertain the host or strepsipteran cephalothorax) (Fig. 1A). Surveys range of the planthopper, we caged planthopper adults were conducted at 2-wk intervals until the end of the onto potted stems of the 11 dominant plant species at our summer when sprangletop had completely senesced Þeld sites. These plant species were the grasses spangle- (early September). The survey was continued each top, switch grass (Panicum virgatum L.), prairie season for 3 yr. cordgrass (Spartina pectinata Link), and smooth brome For each planthopper generation, after adults had (Bromus inermis Leyss.); common reed [Phragmites aus- become scarce, we conducted a census of planthopper tralis (Cav.) Trin]; sedges (Carex sp.); rushes (Scirpus eggs. Twenty-Þve sprangletop stems with planthopper sp.); cattails (Typha spp.); Canada goldenrod (Solidago eggs were haphazardly collected from each pond. canadensis L.); smart weed (Polygonum sp.); and thistle Stems were left to incubate for3datroom temper- (Circium sp.). Two common grass crops, corn (Zea mays ature (stem bases were submerged in water) to ensure L.) and wheat (Triticum aestivum L.), also were included that recently parasitized hosts could be identiÞed. in this study. Young, nonßowering shoots of the noncrop Stems were subsequently dissected under a stereo- plants were excavated from the Þeld in early June 1999 scopic dissecting microscope (10ϫ) to expose plan- and potted in Pro-mix BX soil (20-cm-diameter pots). thopper eggs inserted just beneath the stem epidermis Corn was grown from seed (Burpee Seed Co., Warm- (Fig. 1C). Planthopper eggs were identiÞed as either inster, PA, Early Choice Hybrid SE variety), and wheat healthy (developing white embryos or as cast chori- was obtained as seedlings from a local farmer. Both crop ons, indicating successful emergence), parasitized plants were grown in 20-cm pots by using Pro-Mix BX. (red immatures, or host chorions with circular exit Clear Mylar sheeting, formed into tubes, were inserted holes, indicating successful emergence), or dead over the plants. The tops of the cages were constructed (deßated or brown eggs). A subset of planthopper of mosquito netting hot-glued to the Mylar. Twenty-Þve nymphs and adults and egg parasitoids were preserved recently eclosed adult planthoppers were added to each in 70% ethanol for later identiÞcation of species. cage, and there were three caged plants per plant spe- 642 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 100, no. 5 cies. Cages were inspected daily for live planthoppers and evidence of feeding (excretion of honeydew). After all planthoppers had died, the plants were carefully in- spected for planthopper eggs. Longevity and Fecundity of Wing-Dimorphic Fe- males. Several hundred late
Recommended publications
  • (Crone Et Al.) S1. List of Studies with Movement In
    Supplementary material: Mixed use landscapes can promote range expansion (Crone et al.) S1. List of studies with movement in high- and low-quality environments 1 Allema, B., van der Werf, W., van Lenteren, J. C., Hemerik, L. & Rossing, W. A. H. Movement behaviour of the carabid beetle Pterostichus melanarius in crops and at a habitat interface explains patterns of population redistribution in the field. PLoS One 9 (2014). 2 Avgar, T., Mosser, A., Brown, G. S. & Fryxell, J. M. Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J. Anim. Ecol. 82, 96-106 (2013). 3 Brouwers, N. C. & Newton, A. C. Movement analyses of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae). Bulletin of Entomological Research 100, 623-634 (2010). 4 Brown, L. M. et al. Using animal movement behavior to categorize land cover and predict consequences for connectivity and patch residence times. Landscape Ecol 32, 1657-1670 (2017). 5 Capinera, J. L. & Barbosa, P. Dispersal of first-instar gypsy moth larvae in relation to population quality. Oecologia 26, 53-64 (1976). 6 Cartar, R. V. & Real, L. A. Habitat structure and animal movement: the behaviour of bumble bees in uniform and random spatial resource distributions. Oecologia 112, 430- 434 (1997). 7 Chapman, D. S., Dytham, C. & Oxford, G. S. Landscape and fine-scale movements of a leaf beetle: the importance of boundary behaviour. Oecologia 154, 55-64 (2007). 8 Claussen, D. L., Finkler, M. S. & Smith, M. M. Thread trailing of turtles: methods for evaluating spatial movements and pathway structure. Canadian Journal of Zoology 75, 2120-2128 (1997).
    [Show full text]
  • Toxic Effects of Virtako on the Brown Planthopper, Nilaparvata Lugens (Hemiptera: Delphacidae)
    Revista Colombiana de Entomología 39 (2): 197-200 (Julio - Diciembre 2013) 197 Toxic effects of virtako on the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) Efectos toxicos del virtako sobre el saltahojas marrón Nilaparvata lugens (Hemiptera: Delphacidae) YONG CHEN1, XIAOwa QING1, JIE LIU1, JIE ZHANG2 and RUNJIE ZHANG1,3 Abstract: Laboratory assays (Institute of Entomology, Sun Yat-Sen University, Guangzhou, China) were conducted to assess the potential of virtako, a mixture insecticide, which contains 20% chlorantraniliprole and 20% thiamethoxam, against the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). The toxic effects of virtako against the nymphal instars of N. lugens indicated that all instars were sensitive to the five concentrations (16, 8, 4, 2, 1 mg/L). The first-second instars were the most susceptible, and the median lethal concentrations [LC50] were 4.76, 1.96 and 0.85 mg/L at 24, 48 and 72 h after treatment, respectively. Fifth-instars were the least susceptible with the LC50 values of 23.76, 7.25 and 3.95 mg/L at 24, 48 and 72 h after treatment, respectively, and were significantly greater than those of the first - second instars. The LC50s of the third - fourth instars were 11.59, 5.72 and 2.17 mg/L at 24, 48 and 72 h after treatment, respectively. These results indicate that virtako might be an effective alternative for the control of BPH N. lugens, by delaying the resistance levels of thiamethoxam. Key words: Brown planthopper. Toxicity. Laboratory assays. Lethal concentrations. Resumen: Ensayos de laboratorio (Institute of Entomology, Sun Yat-Sen University, Guangzhou, China) fueron lleva- dos a cabo con el objeto de determinar el potencial de virtako, una mezcla insecticida, que contiene 20% de clorantra- niliprole y 20% de tiametoxam, contra el saltahojas marrón, Nilaparvata lugens (Hemiptera: Delphacidae).
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Adaptation of the Brown Planthopper, Nilaparvata Lugens (Stål), to Resistant Rice Varieties
    Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties Jedeliza B. Ferrater Promotor Prof.dr Marcel Dicke Professor of Entomology Wageningen University Co-promoters Dr Finbarr G. Horgan Senior Scientist International Rice Research Institute, Los Baños, Philippines Dr Peter W. de Jong Assistant Professor at the Laboratory of Entomology Wageningen University Other members Prof. Dr Jaap Bakker, Wageningen University Dr Ben Vosman, Plant Research International, Wageningen Dr Bart A. Pannebakker, Wageningen University Dr Orlando M.B. de Ponti, Wageningen This research was conducted under the auspices of the C.T de Wit Graduate School for Production Ecology and Resource Conservation. Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties Jedeliza B. Ferrater Thesis Submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 2 December 2015 at 11a.m. in the Aula Jedeliza B. Ferrater Adaptation of the brown planthopper, Nilaparvata lugens (Stål), to resistant rice varieties 200 pages PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summary in English ISBN 978-94-6257-559-2 ACKNOWLEDGEMENT It has been said that it‘s not the destination, but the journey that matters. This thesis is much like a journey with unexpected circumstances encountered along the way. Overall, my memories captured more the nice view and I have no regrets of passing some bumps along the way because these bumps have shaped my character and prepared myself to deal with the future.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • The Evolution of Insecticide Resistance in the Brown Planthopper
    www.nature.com/scientificreports OPEN The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in Received: 18 September 2017 Accepted: 2 March 2018 the period 2012–2016 Published: xx xx xxxx Shun-Fan Wu1, Bin Zeng1, Chen Zheng1, Xi-Chao Mu1, Yong Zhang1, Jun Hu1, Shuai Zhang2, Cong-Fen Gao1 & Jin-Liang Shen1 The brown planthopper, Nilaparvata lugens, is an economically important pest on rice in Asia. Chemical control is still the most efcient primary way for rice planthopper control. However, due to the intensive use of insecticides to control this pest over many years, resistance to most of the classes of chemical insecticides has been reported. In this article, we report on the status of eight insecticides resistance in Nilaparvata lugens (Stål) collected from China over the period 2012–2016. All of the feld populations collected in 2016 had developed extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Synergism tests showed that piperonyl butoxide (PBO) produced a high synergism of imidacloprid, thiamethoxam, and buprofezin efects in the three feld populations, YA2016, HX2016, and YC2016. Functional studies using both double-strand RNA (dsRNA)-mediated knockdown in the expression of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster showed that CYP6ER1 confers imidacloprid, thiamethoxam and buprofezin resistance. These results will be benefcial for efective insecticide resistance management strategies to prevent or delay the development of insecticide resistance in brown planthopper populations. Te brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a serious pest on rice in Asia1. Tis monophagous pest causes severe damage to rice plants through direct sucking ofen causing “hopper burn”, ovipositing and virus disease transmission during its long-distance migration1,2.
    [Show full text]
  • High Levels of Resistance in the Common Bed Bug, <I>Cimex Lectularius</I> (Hemiptera: Cimicidae), to Neonicotinoid I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2016 High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides Alvaro Romero New Mexico State University, [email protected] Troy D. Anderson University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons, and the Medicine and Health Sciences Commons Romero, Alvaro and Anderson, Troy D., "High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides" (2016). Faculty Publications: Department of Entomology. 533. http://digitalcommons.unl.edu/entomologyfacpub/533 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Medical Entomology, 53(3), 2016, 727–731 doi: 10.1093/jme/tjv253 Advance Access Publication Date: 28 January 2016 Short Communication Short Communication High Levels of Resistance in the Common Bed Bug, Cimex lectularius (Hemiptera: Cimicidae), to Neonicotinoid Insecticides Alvaro Romero1,2 and Troy D. Anderson3 1Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003 ([email protected]), 2Corresponding author, e-mail: [email protected], and 3Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061 ([email protected]) Received 4 November 2015; Accepted 23 December 2015 Abstract The rapid increase of bed bug populations resistant to pyrethroids demands the development of novel control tactics.
    [Show full text]
  • Tri-Ology Vol 58, No. 1
    FDACS-P-00124 April - June 2020 Volume 59, Number 2 TRI- OLOGY A PUBLICATION FROM THE DIVISION OF PLANT INDUSTRY, BUREAU OF ENTOMOLOGY, NEMATOLOGY, AND PLANT PATHOLOGY Division Director, Trevor R. Smith, Ph.D. BOTANY ENTOMOLOGY NEMATOLOGY PLANT PATHOLOGY Providing information about plants: Identifying arthropods, taxonomic Providing certification programs and Offering plant disease diagnoses native, exotic, protected and weedy research and curating collections diagnoses of plant problems and information Florida Department of Agriculture and Consumer Services • Division of Plant Industry 1 Phaenomerus foveipennis (Morimoto), a conoderine weevil. Photo by Kyle E. Schnepp, DPI ABOUT TRI-OLOGY TABLE OF CONTENTS The Florida Department of Agriculture and Consumer Services- Division of Plant Industry’s (FDACS-DPI) Bureau of Entomology, HIGHLIGHTS 03 Nematology, and Plant Pathology (ENPP), including the Botany Noteworthy examples from the diagnostic groups Section, produces TRI-OLOGY four times a year, covering three throughout the ENPP Bureau. months of activity in each issue. The report includes detection activities from nursery plant inspections, routine and emergency program surveys, and BOTANY 04 requests for identification of plants and pests from the public. Samples are also occasionally sent from other states or countries Quarterly activity reports from Botany and selected plant identification samples. for identification or diagnosis. HOW TO CITE TRI-OLOGY Section Editor. Year. Section Name. P.J. Anderson and G.S. Hodges ENTOMOLOGY 07 (Editors). TRI-OLOGY Volume (number): page. [Date you accessed site.] Quarterly activity reports from Entomology and samples reported as new introductions or interceptions. For example: S.E. Halbert. 2015. Entomology Section. P.J. Anderson and G.S.
    [Show full text]
  • Genome Sequence of the Small Brown Planthopper, Laodelphax Striatellus
    GigaScience, 6, 2017, 1–12 doi: 10.1093/gigascience/gix109 Advance Access Publication Date: 10 November 2017 Data Note DATA NOTE Genome sequence of the small brown planthopper, Laodelphax striatellus Junjie Zhu1,4,†,FengJiang2,†, Xianhui Wang1, Pengcheng Yang2, Yanyuan Bao 3, Wan Zhao1,WeiWang1, Hong Lu1, Qianshuo Wang1,NaCui1, Jing Li1, Xiaofang Chen1, Lan Luo1,JintingYu1, Le Kang1,2,∗ and Feng Cui1,∗ 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, 2Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China, 3State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China and 4University of Chinese Academy of Sciences, Beijing 100049, China ∗Correspondence address. Dr. Feng Cui, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Tel: +86-10-64807218; Fax: 86-10-64807099; E-mail: [email protected]; Dr. Le Kang, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Tel: +86-10-64807219; Fax: 86-10-64807099; E-mail: [email protected] †Equal contribution Abstract Background: Laodelphax striatellus Fallen´ (Hemiptera: Delphacidae) is one of the most destructive rice pests. L. striatellus is different from 2 other rice planthoppers with a released genome sequence, Sogatella furcifera and Nilaparvata lugens,inmany biological characteristics, such as host range, dispersal capacity, and vectoring plant viruses. Deciphering the genome of L.
    [Show full text]
  • A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L
    Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Heteroptera: Gerromorpha) in Central Europe
    Shortened web version University of South Bohemia in České Budějovice Faculty of Science Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe RNDr. Tomáš Ditrich Ph.D. Thesis Supervisor: Prof. RNDr. Miroslav Papáček, CSc. University of South Bohemia, Faculty of Education České Budějovice 2010 Shortened web version Ditrich, T., 2010: Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe. Ph.D. Thesis, in English. – 85 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Annotation Ecology of Veliidae and Mesoveliidae (Hemiptera: Heteroptera: Gerromorpha) was studied in selected European species. The research of these non-gerrid semiaquatic bugs was especially focused on voltinism, overwintering with physiological consequences and wing polymorphism with dispersal pattern. Hypotheses based on data from field surveys were tested by laboratory, mesocosm and field experiments. New data on life history traits and their ecophysiological consequences are discussed in seven original research papers (four papers published in peer-reviewed journals, one paper accepted to publication, one submitted paper and one communication in a conference proceedings), creating core of this thesis. Keywords Insects, semiaquatic bugs, life history, overwintering, voltinism, dispersion, wing polymorphism. Financial support This thesis was mainly supported by grant of The Ministry of Education, Youth and Sports of the Czech Republic No. MSM 6007665801, partially by grant of the Grant Agency of the University of South Bohemia No. GAJU 6/2007/P-PřF, by The Research Council of Norway: The YGGDRASIL mobility program No. 195759/V11 and by Czech Science Foundation grant No. 206/07/0269. Shortened web version Declaration I hereby declare that I worked out this Ph.D.
    [Show full text]