The Formation of Androstenone Conjugates in Testis Tissue of the Mature Boar

Total Page:16

File Type:pdf, Size:1020Kb

The Formation of Androstenone Conjugates in Testis Tissue of the Mature Boar THE FORMATION OF ANDROSTENONE CONJUGATES IN TESTIS TISSUE OF THE MATURE BOAR by JILLIAN EVE DESNOYER A Thesis Presented to the University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Animal and Poultry Science (Toxicology) Guelph, Ontario, Canada © Jillian E. Desnoyer, November, 2011 ABSTRACT THE FORMATION OF ANDROSTENONE CONJUGATES IN TESTIS TISSUE OF THE MATURE BOAR. Jillian Eve Desnoyer Advisor: University of Guelph, 2011 Dr. E.J. Squires The accumulation of androstenone in the fat of mature boars results in boar taint; the conjugation of androstenone would decrease this important meat quality problem by decreasing the accumulation and increasing the excretion of androstenone. Leydig cells and testis microsomes from mature boars were incubated with radiolabeled pregnenolone, and the free and conjugated metabolites were examined by HPLC. Sulfated androstenone with a mass of 367 m/z was directly identified by MS, with a novel tentative structure of 3-keto-4- sulfoxy-androstenone. Addition of enolase to the microsomal incubations increased the formation of 3-keto-4-sulfoxy-androstenone. Overexpression of SULT2A1 in HEK cells resulted in the sulfoconjugation of dehydroepiandrosterone, but not androstenone, suggesting that SULT2A1 may not be involved in sulfoconjugation of androstenone. This thesis describes the novel direct characterization of androstenone sulfate and the importance of enolase in its formation. The relevance to boar taint metabolism is discussed. ACKNOWLEDGEMENTS To Dr. Jim Squires: Thank you for your boundless breadth of knowledge, understanding and encouragement throughout the completion of this thesis. Your patience and willingness to deal with all of my self-proclaimed “stupid questions” was unparalleled to any other during my education. Delving feet first into this project would have been far more intimidating if it weren’t for you. I appreciate it more than I can possibly say. To my advisory committee Dr. Gregoy Bedecarrats and Dr. Jim Raeside – thank you for your continued support and help throughout the process of researching and writing this thesis. Without the knowledge that you were there to help, I wouldn’t have been able to proceed with the utmost confidence. Dr. Raeside, your incredible talents at pouring Percoll gradients are, well, incredible as is your amazing knowledge of everything related to reproductive endocrinology. To Yanping Lou: you are the technical superhero of our lab. Your ability to fix the HPLC when all seemed lost – on a regular basis – is incredible. Without your teaching, technical support and constantly smiling face, our lab wouldn’t function and wouldn’t be nearly as great. To Heather Christie: thank you for getting up early with me to isolate those pesky Leydig cells and for being THE woman to see for all things related to steroidal conjugates. I loved our endless talks and I look forward to continuing them for years to come. To Dr. Jim Atkinson: thank you for your teasing and reassurance throughout the process of both my undergraduate degree and this thesis. I cannot possibly say how much our chats both meant to and helped me. To my lab mates both past and present: Matt, thank you for putting up with my endless questions related to transfection and cloning and for all of my random trivia tidbits that interrupted you daily. I’m sure you’ll miss me when the lab is completely quiet. Kim, thank you for everything. I missed your presence greatly this last year and, when you’re all grown up and back from Indiana, I look forward to pestering you to play Munchkin. To Andy, thank you. I would never have made it through this without you. Thank you for sitting through constant repeats of the same presentations, listening to me wax poetic about androstenone sulfate and for getting excited with me when I found something – anything – exciting. Thank you for taking care of our little furry animals while I delved headfirst into the most trying educational triumph of my life - thus far. Also, to Ella, flint and Bailey: ruff ruff meow meow ruff barrooo. This translates roughly to “thank you for the constant cuddles and love”. To my family and friends – without your support and encouragement, this wouldn’t have been possible. Mom, your biweekly phone calls and feigned excitement over a project you barely understood was awesome. I can’t believe I finally did it and I know I couldn’t do it without you. Dad, thank you for believing in me, even when it wasn’t said aloud, I know you knew I could do it. Thank you to my friends who sat through my presentations, giving helpful and great advice. Not only has this project taught me more about endocrinology and molecular biology than I could ever have imagined, it has taught me more than that. It has taught me that my love of research is boundless and that, more importantly, I can do it. It is through the support, patience and encouragement of the above people that I can truly say I am a Mistress of Science. iii TABLE OF CONTENTS THE fORMATION Of ANDROSTENONE CONJUGATES IN TESTIS TISSUE fROM THE MATURE BOAR............................................................................................................................................................i LIST OF FIGURES....................................................................................................................................................vii LIST Of TABLES.........................................................................................................................................................x LIST Of ABBREVIATIONS...................................................................................................................................xii CHAPTER I: REVIEW Of THE LITERATURE................................................................................................. 1 1.1 Boar Taint and Pig Production.................................................................................................................... 1 1.1.1 Introduction..................................................................................................................................1 1.1.2 Current Solutions........................................................................................................................3 1.1.2.1 Carcass Measurements/On-Line Testing....................................................................3 1.1.2.2 Semen Sexing.........................................................................................................................4 1.1.2.3 Immunocastration...............................................................................................................5 1.1.2.4 Other GnRH Agonists ..........................................................................................................7 1.2. Steroidogenesis, 16-Androstene Steroids and Steroid Circulation............................................ 9 1.2.1 Location of Steroidogenesis in the Boar...........................................................................9 1.2.2 Steroidogenesis Throughout the Lifetime of the Pig ...............................................10 1.2.3 Enterohepatic Circulation of Steroids ............................................................................12 1.2.4 Binding of Steroid Hormones in the Blood and Saliva ............................................14 1.2.4.1 Steroid Hormone Movement in the Blood ...............................................................14 1.2.4.2 Steroid Binding in Boar Saliva.....................................................................................16 1.2.5 Steroids and Target Tissues Including Adipose Tissue ..........................................17 1.3 Androstenone Metabolism .........................................................................................................................19 1.3.1 Androstenone Synthesis.......................................................................................................19 1.3.2 Androstenone Degradation and Excretion...................................................................22 1.3.3 Androstenone Sulfate ............................................................................................................23 1.4 Enzymes Involved in Conjugation...........................................................................................................25 1.4.1 Sulfotransferases.....................................................................................................................25 1.4.1.1 SulFotransFerase 2A1 .......................................................................................................27 1.4.1.2 SulFotransFerase 2B1 .......................................................................................................28 1.4.2 Steroid Sulfatase ......................................................................................................................29 iv 1.4.2 Enolases.......................................................................................................................................30 1.4.3 UDP-glucuronosyl transferases.........................................................................................32 1.5 Rationale for Experiment............................................................................................................................34 CHAPTER II: HYPOTHESIS AND OBJECTIVES............................................................................................36
Recommended publications
  • Testosterone and the Incidence of Boar Taint: Effects of Testosterone Or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows
    Meat Science 13 (1985) 237-245 Testosterone and the Incidence of Boar Taint: Effects of Testosterone or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows B. D. Schanbacher, J. T. Yen & W. G. Pond USDA, ARS, Roman L. Hruska US Meat Animal Research Center, PO Box 166, Clay Center, NE 68933, USA (Received: 2 June, 1984) S UMMA R Y Boars, barrows and barrows implanted with testosterone or testosterone propionate via polydimethylsiloxane (Silastic) capsules were placed on test in individual pens at 10 weeks of age. Each animal was slaughtered at 110kg and evaluated for growth rate, efficiency of feed utilization, carcass merit and the incidence of objectionable odors (boar taint). Five capsules of testosterone or testosterone propionate were used in barrows since they substantially elevated concentrations of serum testosterone, decreased serum LH and stimulated weights of the accessory sex glands. Large variations within and between litters of pigs were found for performance and carcass traits; thus, the influences of castration and testosterone replacement therapy on these traits were inconclusive. In contrast, the effects of castration and hormone treatment on the incidence of boar taint were more definitive. The incidence of boar taint was relatively high in boars, according to a consumer taste panel. This characteristic odor was appreciably lower in barrows and was not reinstated with either testosterone or testosterone propionate implants. These results suggest that testosterone is not itself responsible for boar taint and that 5~t-androstenone, the pheromone most closely associated with boar taint, is not produced by peripheral metabolism of testosterone. Additional studies are warranted to provide insight into the regulation of testicular steroid secretion in the boar and the contribution of these steroids to boar taint and protein anabolism.
    [Show full text]
  • Intramuscular Injections of Male Pheromone 5Α-Androstenol Change the Secretory Ovarian Function in Gilts During Sexual Maturation
    Vol. 3, No. 3 241 ORIGINAL RESEARCH Intramuscular injections of male pheromone 5α-androstenol change the secretory ovarian function in gilts during sexual maturation Stanisława Stefańczyk-Krzymowska1, Tadeusz Krzymowski, Barbara Wąsowska, Barbara Jana, Jarosław Słomiński Division of Reproductive Endocrinology and Pathophysiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland Received: 8 September 2003; accepted: 4 November 2003 SUMMARY In addition to the standard olfactory pathway typical for signaling phero- mones, the existence of a humoral pathway for the priming action of phero- mones has been earlier postulated. In this study in vivo experiment was performed to establish whether intramuscular injections of boar pheromone, 5α-androstenol (5α-androst-16-en-3-ol), might change the development and secretory function of the ovarian follicles during sexual maturation of gilts. Gilts from groups I (n=15) and II (n=13) received androstenol (10 μg/gilt/injection; i.m.) three times a week from day 192 to 234 of age. Similar, control gilts (group C; n=13) received saline. Additionally, the na- sal cavity of animals from group II was irrigated with zinc sulfate solution to depress olfactory function. The reproductive organs and follicular fl uid 1Corresponding author: Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland; E-mail: [email protected] Copyright © 2003 by the Society for Biology of Reproduction 242 Male pheromonepheromone in gilts were collected on day 240 of age. There were no signifi cant differences among groups concerning the weight of the ovary and uterus, the length of the uterine horns and intensity of cytochrome P450scc and P450arom im- munoexpression.
    [Show full text]
  • BMC Genetics Biomed Central
    BMC Genetics BioMed Central Research article Open Access Association between SNPs within candidate genes and compounds related to boar taint and reproduction Maren Moe*1,2, Sigbjørn Lien2,3, Torunn Aasmundstad1, Theo HE Meuwissen2, Marianne HS Hansen1,3, Christian Bendixen4 and Eli Grindflek1 Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway, 2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway, 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway and 4Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark Email: Maren Moe* - [email protected]; Sigbjørn Lien - [email protected]; Torunn Aasmundstad - [email protected]; Theo HE Meuwissen - [email protected]; Marianne HS Hansen - [email protected]; Christian Bendixen - [email protected]; Eli Grindflek - [email protected] * Corresponding author Published: 5 July 2009 Received: 9 October 2008 Accepted: 5 July 2009 BMC Genetics 2009, 10:32 doi:10.1186/1471-2156-10-32 This article is available from: http://www.biomedcentral.com/1471-2156/10/32 © 2009 Moe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is produced in the same biochemical pathway as testosterone and estrogens, which represents a particular challenge when selecting against high levels of androstenone in the breeding programme, without simultaneously decreasing levels of other steroids.
    [Show full text]
  • Drug Testing Program
    DRUG TESTING PROGRAM Copyright © 2021 CrossFit, LLC. All Rights Reserved. CrossFit is a registered trademark ® of CrossFit, LLC. 2021 DRUG TESTING PROGRAM 2021 DRUG TESTING CONTENTS 1. DRUG-FREE COMPETITION 2. ATHLETE CONSENT 3. DRUG TESTING 4. IN-COMPETITION/OUT-OF-COMPETITION DRUG TESTING 5. REGISTERED ATHLETE TESTING POOL (OUT-OF-COMPETITION DRUG TESTING) 6. REMOVAL FROM TESTING POOL/RETIREMENT 6A. REMOVAL FROM TESTING POOL/WATCH LIST 7. TESTING POOL REQUIREMENTS FOLLOWING A SANCTION 8. DRUG TEST NOTIFICATION AND ADMINISTRATION 9. SPECIMEN ANALYSIS 10. REPORTING RESULTS 11. DRUG TESTING POLICY VIOLATIONS 12. ENFORCEMENT/SANCTIONS 13. APPEALS PROCESS 14. LEADERBOARD DISPLAY 15. EDUCATION 16. DIETARY SUPPLEMENTS 17. TRANSGENDER POLICY 18. THERAPEUTIC USE EXEMPTION APPENDIX A: 2020-2021 CROSSFIT BANNED SUBSTANCE CLASSES APPENDIX B: CROSSFIT URINE TESTING PROCEDURES - (IN-COMPETITION) APPENDIX C: TUE APPLICATION REQUIREMENTS Drug Testing Policy V4 Copyright © 2021 CrossFit, LLC. All Rights Reserved. CrossFit is a registered trademark ® of CrossFit, LLC. [ 2 ] 2021 DRUG TESTING PROGRAM 2021 DRUG TESTING 1. DRUG-FREE COMPETITION As the world’s definitive test of fitness, CrossFit Games competitions stand not only as testaments to the athletes who compete but to the training methodologies they use. In this arena, a true and honest comparison of training practices and athletic capacity is impossible without a level playing field. Therefore, the use of banned performance-enhancing substances is prohibited. Even the legal use of banned substances, such as physician-prescribed hormone replacement therapy or some over-the-counter performance-enhancing supplements, has the potential to compromise the integrity of the competition and must be disallowed. With the health, safety, and welfare of the athletes, and the integrity of our sport as top priorities, CrossFit, LLC has adopted the following Drug Testing Policy to ensure the validity of the results achieved in competition.
    [Show full text]
  • Pheromone Advantage Review Examining Dr. Virgil Amend's
    Pheromone Advantage: Review Examining Dr. Virgil Amend’s Pheromone Cologne Product Released Pheromone Advantage reviews have been popping up all over the Internet and GentlemensUniversity.com reveals the truth about this cologne that claims it makes it so much easier to attract the opposite gender. (PRWEB) February 08, 2014 Pheromone Advantage that claims people can amplify their sexual appeal to the opposite sex and even intimidate others from the same sex by simply spritzing some of the pheromone cologne on has caught the attention of GentlemensUniversity.com’s Stan Stevenson, prompting an investigative review. “Our Pheromone Advantage review shows that it is a pheromone cologne product developed by Dr. Virgil Amend. It triggers emotions and sexual attraction without the opposite sex ever realizing that they are actually being influenced by pheromones,” reports Stevenson. “Most other pheromone scents contain very small amounts of pheromones, certainly not enough to have much of an impact on the opposite sex. Pheromone Advantage comes in two variants, one meant to attract men, and the other for targeting women. Each variant is formulated accordingly with the correct pheromones with a large enough concentration, so they can’t easily be washed away or masked.” Pheromone Advantage for attracting women is formulated with Androstenone, Androstenol, and Androstadienone. Produced by both men and women, although Androstenone is considered to be a predominantly male pheromone, it gives off a good strong vibe akin to that of an alpha male. Androstenol helps the wearer seem less intimidating and more approachable, and helps elevate the mood of a woman. Pheromone Advantage for attracting men contains Copulins, Estratetraenol, and Androstenol.
    [Show full text]
  • WO 2018/035095 Al 22 February 2018 (22.02.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/035095 Al 22 February 2018 (22.02.2018) W !P O PCT (51) International Patent Classification: 199 Grandview Road, Skillman, New Jersey 08558 (US). A 61K 31/57 (2006 .01) A 61K 9/127 (2006 .0 1) FUETTERER, Tobias Johannes; 199 Grandview Road, Skillman, New Jersey 08558 (US). (21) International Application Number: PCT/US20 17/046894 (74) Agent: SHIRTZ, Joseph F. et al; JOHNSON & JOHNSON, One Johnson & Johnson Plaza, New (22) International Filing Date: Brunswick, New Jersey 08933 (US). 15 August 2017 (15.08.2017) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/375,676 16 August 2016 (16.08.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/402,439 30 September 2016 (30.09.2016) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 15/354,1 14 17 November 2016 (17. 11.2016) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant: JANSSEN PHARMACEUTICA NV OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE).
    [Show full text]
  • The Relationship Between Oral Contraceptive Use and Sensitivity to Olfactory Stimuli
    YHBEH-03499; No. of pages: 6; 4C: Hormones and Behavior xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Hormones and Behavior journal homepage: www.elsevier.com/locate/yhbeh The relationship between oral contraceptive use and sensitivity to olfactory stimuli Kaytlin J. Renfro ⁎, Heather Hoffmann Psychology Department, Knox College, 2 East South Street, Galesburg, IL 61401-4999, USA article info abstract Article history: The present study examined differences in olfactory sensitivity between 16 naturally cycling (NC) women Received 2 March 2012 and 17 women taking monophasic oral contraceptives (OCs) to six odors: lemon, peppermint, rose, musk, Revised 20 November 2012 androstenone and androsterone. Thresholds were assessed twice for both groups of women (during the Accepted 2 January 2013 periovulatory and luteal phases of their cycles) via a forced-choice discrimination task. NC women in the Available online xxxx periovulatory phase were significantly more sensitive to androstenone, androsterone, and musk than women taking OCs. These findings give support to odor-specific hormonal modulation of olfaction. Further, Keywords: Oral contraceptives due to the social and possibly sexual nature of these odors, future work should address whether there is a re- Olfaction lationship between decreased sensitivity to these odors and reported behavioral side effects among women Odor taking OCs. Ovarian steroids © 2013 Elsevier Inc. All rights reserved. Threshold Introduction problems, such as stroke (Seibert et al., 2003). Women taking OCs have also reported many behavioral side effects, such as emotional la- There are a number of physiological, perceptual, and behavioral bility and decreased sexual desire (Battaglia et al., 2012; Caruso et al., changes that have been reported to co-occur with ovulation in 2004; Sanders et al., 2001; Warner Chilcott, 2009, but see Alexander women; these changes have largely been attributed to the hormonal et al., 1990).
    [Show full text]
  • Is 3αœandrostenol Pheromone Related to Menstrual Synchrony?
    116-118-JFPRHC April 07 3/13/07 11:39 AM Page 1 SHORT COMMUNICATION J Fam Plann Reprod Health Care: first published as 10.1783/147118907780254042 on 1 April 2007. Downloaded from Is 3α−androstenol pheromone related to menstrual synchrony? Shayesteh Jahanfar, Che Haslinawati Che Awang, Raihan Abd Rahman, Rinni Damayanti Samsuddin, Chin Pui See Abstract Results A total of 59.1% of the subjects studied were found to have menstrual synchrony. There was no Background and methodology The ovarian cycles significant association between menstrual synchrony of females living and interacting together may and smelling threshold. However, a significant synchronise due to pheromones released from correlation was found between menstrual synchrony and axillary secretary glands, the highest concentration of personal hygiene score (p<0.01). which is produced in the mid-follicular phase, prior to ovulation. The objective of this study was to find Conclusions The phenomenon of menstrual synchrony evidence for menstrual synchrony in a group of may be related to various factors. The results failed to female students living together and to obtain a demonstrate any significant difference between correlation between the ability to smell the putative synchronised and non-synchronised subjects in pheromone, 5α-androst-16-en-3α-ol (3α- detecting the steroid by sense of smell. However, the androstenol), found in apocrine secretions and odours associated with menstrual blood or vaginal menstrual synchrony. This cross-sectional study discharge might have an affect on menstrual synchrony. involved 88 students who completed a standard Keywords 3α-androstenol, menstrual cycle, questionnaire and whose sense of smell was pheromones, synchrony measured using ten varying thresholds.
    [Show full text]
  • 5A-ANDROSTENONE and TESTOSTERONE in PERIPHERAL PLASMA of the BOAR DURING and FOLLOWING COPULATION*
    Acta vet. scand. 1976, 17, 47,!>---48,7. From the Department of Physiology, Veterinary College of Norway, Oslo. 5a-ANDROSTENONE AND TESTOSTERONE IN PERIPHERAL PLASMA OF THE BOAR DURING AND FOLLOWING COPULATION* By fi)ystein Andresen ANDRESEN, 0YSTEIN: 5rx.-Androstenone and testosterone in peri­ pheral plasma of the boar during and following copulation. Acta vet. scain.d. 19<76, 17, 47!>---487. - Copulation was generaJly followed by in­ creases in peripheral plasma ,5rx.-androstenone and testosterone levels lasting for per10ds of about 6i0 to mo min. The effect of copulation on the plasma levels of these steroids did, however, vary between boars. In seven out of eight boars the maximum levels of 5rx.-andro­ stenone in the period 6-0 to 100 min. after copulation were from 114 to 218 % (mean 150 % ) of the levels in samples collected before copu­ lation. The corresponding figures for testosterone were from 104 to 283 % (mean 19,0 % ) . One boar showed decreasing plasma steroid Ievels after copulation. The coefficient of correlation between the peripheral plasma levels of 5rx.-androstenone and testosterone was found to be + -0.6,1 (n = W3). 5 rx. - and r o steno n e; test o st er one; copulation; sexual stimulation; boar. Odorou1s steroids ,represent an irmporta:nit group among ste­ roids secreted by ,the boar testes. Chemically they a1re C10 steroids with a double bond bertrween c16 and c17' and 'their biosyinithesis * This study was supported by the Norwegian Agricultural Research Council. 4 76 (?). Andresen foom pregnenolone * aind progesterone is erutirely diff erenrt from the biosynthesi.s of androgens aind oesitrogens.
    [Show full text]
  • NIH Public Access Author Manuscript Psychopharmacology (Berl)
    NIH Public Access Author Manuscript Psychopharmacology (Berl). Author manuscript; available in PMC 2010 February 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Psychopharmacology (Berl). 2009 September ; 205(4): 529. doi:10.1007/s00213-009-1562-z. The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress Sandeep Kumar1, Patrizia Porcu1, David F. Werner1, Douglas B. Matthews3, Jaime L. Diaz- Granados3, Rebecca S. Helfand3, and A. Leslie Morrow1,2 Sandeep Kumar: ; Patrizia Porcu: ; David F. Werner: ; Douglas B. Matthews: ; Jaime L. Diaz-Granados: ; Rebecca S. Helfand: ; A. Leslie Morrow: [email protected] 1 Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA 2 Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA 3 Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA Abstract The past decade has brought many advances in our understanding of GABAA receptor-mediated ethanol action in the central nervous system. We now know that specific GABAA receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABAA receptors promoting increases in GABA sensitivity. Ethanol’s effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types.
    [Show full text]
  • Quantitative-Profiling Method of Serum Steroid Hormones By
    Natural Products and Bioprospecting https://doi.org/10.1007/s13659-019-0204-3 ORIGINAL ARTICLE Quantitative‑Profling Method of Serum Steroid Hormones by Hydroxylamine‑Derivatization HPLC–MS Qi Liu1 · Quan Chi1 · Ru‑Ting Fan1 · Hui‑Dong Tian1 · Xian Wang1 Received: 14 March 2019 / Accepted: 3 April 2019 © The Author(s) 2019 Abstract A sensitive and rapid high performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantifcation of ten steroid hormones, including estrogens, androgens, progesterones, and corticosteroids four classes of steroids. The following ten steroid hormones were analyzed: progesterone, 21-deoxycortisol, estrone, 4-androstenedione, testosterone, dihydro-testosterone, androstenone, dehydroepiandrosterone, corticosterone and cortisone. Stable deuterated isotopes were used as internal standards for quantifcation. Sample preparation with and with- out derivatization were performed after liquid–liquid extraction, and the corresponding results were compared according to sensitivity and selectivity. Hydroxylamine derivatization was found to improve the ionization efciency of the analytes for electrospray ionization MS analysis. The gradient of mobile phase and experimental parameters for HPLC separation were optimized. The lower limits of quantifcation were in the range of 0.05–5 ng mL−1 with wide linear range for the ten steroid hormones. The intra-day precision < 11.1% and recovery of 84.5–120% with negligible matrix efect were achieved, where within the acceptance
    [Show full text]
  • Influence of Housing and Season on Pubertal Development, Boar Taint
    Influence of housing and season on pubertal development, boar taint compounds and skin lesions of male pigs Armelle Prunier, Armelle Brillouët, Elodie Merlot, Marie-Christine Meunier-Salaün, Céline Tallet To cite this version: Armelle Prunier, Armelle Brillouët, Elodie Merlot, Marie-Christine Meunier-Salaün, Céline Tallet. Influence of housing and season on pubertal development, boar taint compounds and skin lesionsof male pigs. animal, Published by Elsevier (since 2021) / Cambridge University Press (until 2020), 2013, 7 (12), pp.2035-2043. 10.1017/S1751731113001596. hal-01210497 HAL Id: hal-01210497 https://hal.archives-ouvertes.fr/hal-01210497 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Animal (2013), 7:12, pp 2035–2043 © The Animal Consortium 2013 animal doi:10.1017/S1751731113001596 Influence of housing and season on pubertal development, boar taint compounds and skin lesions of male pigs A. Prunier1,2†, A. Brillouët1,2, E. Merlot1,2, M. C. Meunier-Salaün1,2 and C. Tallet1,2 1INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France; 2Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France (Received 15 May 2013; Accepted 17 July 2013; First published online 19 September 2013) Rearing entire pigs may lead to meat quality and welfare problems in relation to pubertal development.
    [Show full text]