The Instability of Verge-Foliot Clocks in Contrast with the Isochronicity of Pendulum Clocks: a Study of Verge-Foliot Kinematics

Total Page:16

File Type:pdf, Size:1020Kb

The Instability of Verge-Foliot Clocks in Contrast with the Isochronicity of Pendulum Clocks: a Study of Verge-Foliot Kinematics University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2020 The Instability of Verge-Foliot Clocks in Contrast with the Isochronicity of Pendulum Clocks: A Study of Verge-Foliot Kinematics Aaron Seth Blumenthal University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Blumenthal, Aaron Seth, "The Instability of Verge-Foliot Clocks in Contrast with the Isochronicity of Pendulum Clocks: A Study of Verge-Foliot Kinematics" (2020). Theses and Dissertations. 2461. https://dc.uwm.edu/etd/2461 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE INSTABILITY OF VERGE-FOLIOT CLOCKS IN CONTRAST WITH THE ISOCHRONICITY OF PENDULUM CLOCKS: A STUDY OF VERGE-FOLIOT KINEMATICS by Aaron Seth Blumenthal A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering at The University of Wisconsin-Milwaukee December 2020 ABSTRACT THE INSTABILITY OF VERGE-FOLIOT CLOCKS IN CONTRAST WITH THE ISOCHRONICITY OF PENDULUM CLOCKS: A STUDY OF VERGE-FOLIOT KINEMATICS by Aaron Seth Blumenthal The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Michael Nosonovsky The tower clocks of Europe starting in the 13th century CE employed a verge-foliot mechanism, which was low in both precision and accuracy due to the sensitivity of frictional losses in the system. The pendulum and Huygens’ introduction of the Theory of Involutes is shown to be a mechanism with a linear relationship to frictional losses in the system, instead of the non-linear relationship between frictional losses in verge-foliot mechanisms. The isochrone nature of vibrations of the pendulum are discussed in contrast to the variance in oscillation seen in verge-foliots. The introduction of the pendulum resulted in an improvement of accuracy of around π/µ≈31 times, where µ=0.1 is the coefficient of friction. In this thesis a CAD model is developed for both the verge-foliot and pendulum with a verge, and it is found that FEA analysis produces a sufficiently approximate result to the theoretical models. A discussion of CAD and DFM principles in relation to clocks is also discussed. ii © Copyright by Aaron Seth Blumenthal, 2020 All Rights Reserved iii To my wife, my family, my friends, and my best friend Zorro iv TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................................................... vii LIST OF ABBREVIATIONS .............................................................................................................................. ix ACKNOWLEDGMENTS ................................................................................................................................... x 1. Objective ................................................................................................................................................... 1 2. Introduction .............................................................................................................................................. 1 3. The Medieval and Early Modern Tower Clocks ........................................................................................ 4 3.1 Pre-Pendulum Tower Clocks ............................................................................................................... 5 3.2 Impact of the Invention of the Pendulum on Time Measurement ..................................................... 9 4. Dynamic Modeling of The Verge-And-Foliot Mechanism ....................................................................... 12 4.1 Mechanics of the Verge-and-Foliot Mechanism ............................................................................... 12 4.2 Mathematical Model of the Verge Escapement Mechanism with Foliot ......................................... 15 4.3 Mathematical Model of the Verge Escapement Mechanism with Foliot ......................................... 17 4.4 Stability Analysis ................................................................................................................................ 19 4.5 Comparison with the Stability of the Pendulum Mechanism ........................................................... 21 5. Experimental Modeling of The Verge-And-Foliot Mechanisms .............................................................. 23 5.1 Methods Used ................................................................................................................................... 23 5.2 Set-Up of Experiment ........................................................................................................................ 26 5.3 Results ............................................................................................................................................... 27 5.4 Discussion .......................................................................................................................................... 30 v 6. Conclusions ............................................................................................................................................. 32 References .................................................................................................................................................. 34 APPENDIX .................................................................................................................................................... 37 Appendix A .............................................................................................................................................. 38 Appendix B .............................................................................................................................................. 40 vi LIST OF FIGURES Figure 1 The Elephant Clock made by Ismail al-Jazari was a clepsydra that utilized a primitive escapement, Metropolitan Museum of Art (al-Razzaz al-Jazari & `Abd al-Latif, 1315) (Creative Commons CC0 1.0) ...... 2 Figure 2 Schematic of Verge-Foliot ............................................................................................................... 4 Figure 3 Villard de Honnecourt Foliot 44 illustrating a supposed escapement (Honnecourt, 1230) (Public Domain) ......................................................................................................................................................... 5 Figure 4 Astrarium astronomical clock was finished 2 years later in 1364 by Giovanni Dondi dell’Orologio, note the use of a balance wheel instead of a foliot (de Dondi, 1461) (Public Domain) ............................... 6 Figure 5 Salisbury Cathedral Clock (Llewelyn, 2014) (Creative Commons 3.0) ............................................ 7 Figure 6 Cotehele Clock with its inverted foliot (Denning, 2007) (Creative Commons 3.0) ......................... 9 Figure 7 Tautochrone curve (Bisgaard, 2006) (Public Domain) .................................................................. 11 Figure 8 Comparison of the verge mechanism with a foliot and a pendulum. Note the difference in escapement wheel orientation ................................................................................................................... 14 Figure 9 System block diagram of a verge-foliot system ............................................................................ 19 Figure 10 System block diagram of a verge escapement with a pendulum ............................................... 21 Figure 11 CAD of clock using a proven going train ..................................................................................... 26 Figure 12 Angular Displacement of the Verge-Foliot .................................................................................. 27 Figure 13 Angular Velocity of the Verge-Foliot ........................................................................................... 28 Figure 14 Angular Acceleration of the Verge-Foliot ................................................................................... 28 Figure 15 Angular Displacement of the Pendulum-Verge .......................................................................... 29 Figure 16 Angular Velocity of the Pendulum-Verge ................................................................................... 29 Figure 17 Angular Acceleration of the Pendulum-Verge ............................................................................ 30 Figure 18 Dependency of Period of Oscillation on the Coefficient of Friction ........................................... 30 vii Figure 19 Fourier Transform of Angular Displacement .............................................................................. 40 Figure 20 High Pass Filter at 63 mHz Application of Verge-Foliot Acceleration ......................................... 41 Figure 21 High Pass Filter at 63 mHz Application of Verge-Foliot Displacement in the Frequency Domain .................................................................................................................................................................... 42 viii LIST OF ABBREVIATIONS CAD Computer-Aided Design CAM Computer-Aided Manufacturing FEA Finite Element Analysis FEM Finite Element Method CAE Computer-Aided
Recommended publications
  • SIS Bulletin Issue 77
    Scientific Instrument Society Bulletin June No. 77 2003 Bulletin of the Scientific Instrument Society ISSN 0956-8271 For Table of Contents, see back cover President Gerard Turner Vice-President Howard Dawes Honary Committee Gloria Clifton, Chairman Alexander Crum Ewing, Secretary Simon Cheifetz,Treasurer Willem Hackmann, Editor Peter de Clercq, Meetings Secretary Ron Bristow Tom Lamb Tom Newth Alan Stimpson Sylvia Sumira Trevor Waterman Membership and Administrative matters The Executive Officer (Wg Cdr Geoffrey Bennett) 31 High Street Stanford in the Vale Tel: 01367 710223 Faringdon Fax: 01367 718963 Oxon SN7 8LH e-mail: [email protected] See outside back cover for information on membership Editorial Matters Dr.Willem Hackmann Sycamore House The PLaying Close Tel: 01608 811110 Charlbury Fax: 01608 811971 Oxon OX7 3QP e-mail: [email protected] Society’s Website www.sis.org.uk Advertising See “summary of Advertising Services’ panel elsewhere in this Bulletin. Further enquiries to the Executive Officer, Design and printing Jane Bigos Graphic Design 95 Newland Mill Tel: 01993 209224 Witney Fax: 01993 209255 Oxon OX28 3SZ e-mail: [email protected] Printed by The Flying Press Ltd,Witney The Scientific Instrument Society is Registered Charity No. 326733 © The Scientific Instrument Society 2003 Editorial Spring Time September issue.I am still interested to hear which this time will be published elec- I am off to the States in early June for three from other readers whether they think this tronically on our website.He has been very weeks so had to make sure that this issue project a good idea. industrious on our behalf.
    [Show full text]
  • A Brief History of the Great Clock at Westminster Palace
    A Brief History of the Great Clock at Westminster Palace Its Concept, Construction, the Great Accident and Recent Refurbishment Mark R. Frank © 2008 A Brief History of the Great Clock at Westminster Palace Its Concept, Construction, the Great Accident and Recent Refurbishment Paper Outline Introduction …………………………………………………………………… 2 History of Westminster Palace………………………………………………... 2 The clock’s beginnings – competition, intrigues, and arrogance …………... 4 Conflicts, construction and completion …………………………………….. 10 Development of the gravity escapement ……………………………………. 12 Seeds of destruction ………………………………………………………….. 15 The accident, its analysis and aftermath …………………………………… 19 Recent major overhaul in 2007 ……………………………………………... 33 Appendix A …………………………………………………………………... 40 Footnotes …………………………………………………………………….. 41 1 Introduction: Big Ben is a character, a personality, the very heart of London, and the clock tower at the Houses of Parliament has become the symbol of Britain. It is the nation’s clock, instantly recognizable, and brought into Britain’s homes everyday by the BBC. It is part of the nation’s heritage and has long been established as the nation’s timepiece heralding almost every broadcast of national importance. On the morning of August 5th 1976 at 3:45 AM a catastrophe occurred to the movement of the great clock in Westminster Palace. The damage was so great that for a brief time it was considered to be beyond repair and a new way to move the hands on the four huge exterior dials was considered. How did this happen and more importantly why did this happen and how could such a disaster to one of the world’s great horological treasures be prevented from happening again? Let us first go through a brief history leading up to the creation of the clock.
    [Show full text]
  • SSSS It's About Time Division C Event by Syo Astro
    SSSS It’s About Time Division C Event By syo_astro Directions * Each question is worth one point, where each part (ie. a, b, etc or i, ii, etc) is worth an additional point. The test is 71 points and 30 minutes. Use space provided for answers. * The test involves various types of questions relating to time, timekeeping, astronomy, physics, and/or mechanics. * Within plus or minus 10% of a quantitative answer is considered correct. Without units and significant figures, a correct answer is given a ½ point. * Don’t be afraid to guess (logically) for partial credit where possible, and have fun! PAGE 1 1. This man came up with the idea of absolute time. 2. In 1502, who built the first pocketwatch? 3. Who invented the 1st quartz clock in 1927? 4. In 1577, who invented the first minute hand? 5. Who completed the first documented astrarium clock? 6. In what year was daylight saving time first established in the US? 7. What type of clocks are H1, H2, H3, H4, and H5? 8. What escapement is shown below? 9. Describe one common problem with the escapement below. 10. Label the following referring to the escapement below. a. b. c. d. e. f. g. h. PAGE 2 11. What is the physical purpose of the pendulum in clocks? Why is one used? 12. What clockmaker’s tool is an iron vertical plunger that can place rollers and balanced wheels on staffs? 13. Circle the fusee in the device shown below. a. What is its purpose? 14. What is a silent timekeeping instrument traditionally called? 15.
    [Show full text]
  • Pb3005 Marine Timekeepers
    Marine Timekeepers 16 February 1993 Four stamps commemorating the 300th The stamps were designed by Howard anniversary of the birth of John Harrison, who Brown, a freelance graphic designer working in perfected the Marine Chronometer, go on sale London. Previous work for Royal Mail include at post offices, the British Philatelic Bureau, designing a booklet on the history of British films Collections, and philatelic counters on 16 in 1985, and a set of stamps to mark the February. The stamps feature different layers of bicentenary of Ordnance Survey in 1991. Harrisons “H4” Clock (one of five prototypes, now known as Hl — H5), completed in 1759. The Technical Details clocks can be seen at the National Maritime Museum, Greenwich. Printer: The House of Questa Process: Offset lithography Size: 35 X 37mm, “almost square” Sheets: 1(X) Perforation: 14 x 14Y2 Phosphor: Phosphor Coated Paper Gum: PVA Presentation Pack: No 235, price £1.55 Stamp Cards: Nos 150A-D, price 21 p each. First Day Facilities Unstamped Royal Mail first day cover envelopes will be available from main post offices, the Bureau, Collections, and philatelic counters approximately two weeks before 16 February, price 21 p. The values cover the inland 1 st Class and EC basic rates (24p), Europe, non-EC basic rate (28p); worldwide postcard rate (33p); and basic airmail letter rate (39p). The 24p stamp shows a decorated enamel dial with precision centre-seconds indication. The 28p stamp shows the escapement, remontoire and fusee with automatic ‘maintaining power’. The 33p stamp shows the timekeeping element, including balance and spring and bimetallic temperature compensation.
    [Show full text]
  • This Clock Is a Rather Curious the Movement Is That of a a Combination
    MINERAL GLASS CRYSTALS 36 pc. Assortment Clear Styrene Storage Box Contains 1 Each of Most Popular Sizes From 19.0 to 32.0 $45.00 72 pc. Assortment Clear Styrene Storage Box Contains 1 Each of Most Popular Refills Available Sizes From 14.0 to 35.0 On All Sizes $90.00 :. JJl(r1tvfolet Gfa:ss A~hesive Jn ., 'N-e~ilie . Pofot Tobe · Perfect for MinenifGlass Crystals - dire$ -iA. secondbn ~un or ultraviolet µgh{'DS~~~ cfa#ty as gl;lss. Stock Up At These Low Prices - Good Through November 10th FE 5120 Use For Ronda 3572 Y480 $6.50 V237 $6.50 Y481 $6.95 V238 $6.95 Y482 $6.95 V243 $6.95 51/2 x 63/4 $9.95 FREE - List of Quartz Movements With Interchangeability, Hand Sizes, Measurements, etc. CALL TOLL FREE 1-800-328-0205 IN MN 1-800-392-0334 24-HOUR FAX ORDERING 612-452-4298 FREE Information Available *Quartz Movements * Crystals & Fittings * * Resale Merchandise * Findings * Serving The Trade Since 1923 * Stones* Tools & Supplies* VOLUME13,NUMBER11 NOVEMBER 1989 "Ask Huck" HOROLOGICAL Series Begins 25 Official Publication of the American Watchmakers Institute ROBERT F. BISHOP 2 PRESIDENT'S MESSAGE HENRY B. FRIED QUESTIONS & ANSWERS Railroad 6 Emile Perre t Movement JOE CROOKS BENCH TIPS 10 The Hamilton Electric Sangamo Clock Grade MARVIN E. WHITNEY MILITARY TIME 12 Deck Watch, Waltham Model 1622-S-12 Timepieces WES DOOR SHOP TALK 14 Making Watch Crystals JOHN R. PLEWES 18 REPAIRING CLOCK HANDS 42 CHARLES CLEVES OLD WATCHES 20 Reality Sets In ROBERT D. PORTER WATCHES INSIDE & OUT 24 A Snap, Crackle, & Pop Solution J.M.
    [Show full text]
  • The Turret Clock Keeper's Handbook Chris Mckay
    The Turret Clock Keeper’s Handbook (New Revised Edition) A Practical Guide for those who Look after a Turret Clock Written and Illustrated by Chris McKay [ ] Copyright © 0 by Chris McKay All rights reserved Self-Published by the Author Produced by CreateSpace North Charleston SC USA ISBN-:978-97708 ISBN-0:9770 [ ] CONTENTS Introduction ...............................................................................................................................11 Acknowledgements .................................................................................................................. 12 The Author ............................................................................................................................... 12 Turret clocks— A Brief History .............................................................................................. 12 A Typical Turret Clock Installation.......................................................................................... 14 How a Turret Clock Works....................................................................................................... 16 Looking After a Turret Clock .................................................................................................. 9 Basic safety... a brief introduction................................................................................... 9 Manual winding .............................................................................................................. 9 Winding groups .............................................................................................................
    [Show full text]
  • Mg Minigears and an Ancient Geared Clock That
    ADDENDUM mG miniGears Products of Padua: and an Ancient Geared Clock that Tracks Planets’ Movements Some things take time, but a magazine ad more than 600 years in the making? That’s unusual, but it’s one way of looking at the ads for mG miniGears that featured a complex, highly geared, planet- tracking clock called the Astrarium. The Addendum team had noticed the clock in miniGears’ ads in Gear Technology; the last one appeared in the Jan./Feb. ’04 issue, and the top of it is at right. But we only recently learned the story behind the clock, why the ads featured it, and how a man’s interest in the Astrarium led to the creation of two books and a CD about the ancient device. The story starts with Giovanni Dondi, who lived in 14th-century Italy, in Padua. Although a doctor, Dondi was interested in astronomy and clockmaking, so much so he designed and built the original Astrarium in the 1360s. More than a regular clock, the Astrarium uses a year wheel and a geared assembly to track the movements of the sun, moon and fi ve planets: Venus, Mercury, Saturn, Jupiter and Mars. manufacturing company there. The thinner of the books is Dondi’s Dondi didn’t include the other three The coincidence of Dondi and de’ manuscript, reproduced page by page, planets because he didn’t know about Stefani both being Paduans might have cover to cover, in full-sized color them. No one did. It’s the 14th century, come to nothing if not for one other photographs.
    [Show full text]
  • Decoding the Mechanisms of Antikythera Astronomical Device Decoding the Mechanisms of Antikythera Astronomical Device Jian-Liang Lin · Hong-Sen Yan
    Jian-Liang Lin · Hong-Sen Yan Decoding the Mechanisms of Antikythera Astronomical Device Decoding the Mechanisms of Antikythera Astronomical Device Jian-Liang Lin · Hong-Sen Yan Decoding the Mechanisms of Antikythera Astronomical Device 1 3 Jian-Liang Lin Hong-Sen Yan Department of Mechanical Department of Mechanical Engineering Engineering National Cheng Kung University National Cheng Kung University Tainan Tainan Taiwan Taiwan ISBN 978-3-662-48445-6 ISBN 978-3-662-48447-0 (eBook) DOI 10.1007/978-3-662-48447-0 Library of Congress Control Number: 2015950021 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifcally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microflms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifc statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Clock Tower STEM in A
    build a clock tower Are you ready to use the Engineering Design Process? Engineers follow this process when they’re creating new products or designing solutions to problems. It’s a set of steps that focuses on examining a problem, brainstorming solutions, and testing them out. Engineers don’t always follow the steps in perfect order, and they often repeat a step more than once before they reach a solution that works. The Goal: Solve a design problem by building a clock tower prototype. Paper what you need: Pen or pencil Glue or tape Scissors Cardboard or empty cereal boxes Any additional craft supplies you want to use (Examples: Popsicle sticks, straws, pipe cleaners, etc.) The Design challenge: You are a timekeeper whose job is to take care of your town’s clock tower. You have noticed that the tower has become shaky and there is a crack in the clock face. Create a design for a new clock tower that will be more sturdy. It should also have a clock face that you can remove in sections so that you can clean it. Build a clock tower with a clock face that can be removed in four sections without making the tower fall. build a clock tower CONt. design it Gather all of your materials and examine them. Think about how you might use each of them to build your clock tower. Architects draw blueprints of their buildings before they build them. A blueprint is a drawing of what you want your construction to look like, and it helps you plan how you are going to build something.
    [Show full text]
  • The Clock Tower
    Fondazione Musei Civici di Venezia — The Clock Tower ENG The Clock Tower The Clock Tower is one of the most famous architectural landmarks in Venice, standing over an arch that leads into what is the main shopping street of the city, the old Merceria. It marks both a juncture and a division between the various architectural components of St. Mark’s Square, which was not only the seat of political and religious power but also a public space and an area of economic activity, a zone that looked out towards the sea and also played a functional role as a hub for the entire layout of the city. In short, the Tower and its large Astronomical Clock, a masterpiece of technology and engineering, form an essential part of the very image of Venice. THE HISTORY As is known, the decision to erect a new public clock in the St. Mark’s area to replace the inadequate, old clock of Sant’Alipio on the north-west corner of the Basilica – which was by then going to rack and ruin – predates the decision as to where this new clock was to be placed. It was 1493 when the Senate commissioned Carlo Zuan Rainieri of Reggio Emilia to create a new clock, but the decision that this was to be erected over the entrance to the Merceria only came two years later. Procuratie Vechie and Bocha de According to Marin Sanudo, the following year “on 10 June work Marzaria began on the demolition of the houses at the entrance to the Merceria (…) to lay down the foundations for the most excellent clock”.
    [Show full text]
  • The Evolution of Tower Clock Movements and Their Design Over the Past 1000 Years
    The Evolution Of Tower Clock Movements And Their Design Over The Past 1000 Years Mark Frank Copyright 2013 The Evolution Of Tower Clock Movements And Their Design Over The Past 1000 Years TABLE OF CONTENTS Introduction and General Overview Pre-History ............................................................................................... 1. 10th through 11th Centuries ........................................................................ 2. 12th through 15th Centuries ........................................................................ 4. 16th through 17th Centuries ........................................................................ 5. The catastrophic accident of Big Ben ........................................................ 6. 18th through 19th Centuries ........................................................................ 7. 20th Century .............................................................................................. 9. Tower Clock Frame Styles ................................................................................... 11. Doorframe and Field Gate ......................................................................... 11. Birdcage, End-To-End .............................................................................. 12. Birdcage, Side-By-Side ............................................................................. 12. Strap, Posted ............................................................................................ 13. Chair Frame .............................................................................................
    [Show full text]
  • 1 Functions, Derivatives, and Notation 2 Remarks on Leibniz Notation
    ORDINARY DIFFERENTIAL EQUATIONS MATH 241 SPRING 2019 LECTURE NOTES M. P. COHEN CARLETON COLLEGE 1 Functions, Derivatives, and Notation A function, informally, is an input-output correspondence between values in a domain or input space, and values in a codomain or output space. When studying a particular function in this course, our domain will always be either a subset of the set of all real numbers, always denoted R, or a subset of n-dimensional Euclidean space, always denoted Rn. Formally, Rn is the set of all ordered n-tuples (x1; x2; :::; xn) where each of x1; x2; :::; xn is a real number. Our codomain will always be R, i.e. our functions under consideration will be real-valued. We will typically functions in two ways. If we wish to highlight the variable or input parameter, we will write a function using first a letter which represents the function, followed by one or more letters in parentheses which represent input variables. For example, we write f(x) or y(t) or F (x; y). In the first two examples above, we implicitly assume that the variables x and t vary over all possible inputs in the domain R, while in the third example we assume (x; y)p varies over all possible inputs in the domain R2. For some specific examples of functions, e.g. f(x) = x − 5, we assume that the domain includesp only real numbers x for which it makes sense to plug x into the formula, i.e., the domain of f(x) = x − 5 is just the interval [5; 1).
    [Show full text]