Sézary Syndrome Is a Unique Cutaneous T-Cell Lymphoma As

Total Page:16

File Type:pdf, Size:1020Kb

Sézary Syndrome Is a Unique Cutaneous T-Cell Lymphoma As Leukemia (2008) 22, 393–399 & 2008 Nature Publishing Group All rights reserved 0887-6924/08 $30.00 www.nature.com/leu ORIGINAL ARTICLE Se´zary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3 N Booken1,11, A Gratchev1,11, J Utikal1, C Wei2,XYu3, M Qadoumi1, M Schmuth4, N Sepp4, D Nashan5, K Rass6,TTu¨ting7, C Assaf8, E Dippel1,9, R Stadler10, C-D Klemke1 and S Goerdt1 1Department of Dermatology, Venereology and Allergology, University Medical Centre Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany; 2Institute of Medical Statistics, University Medical Centre Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany; 3Medical Research Center (ZMF), University Medical Centre Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany; 4Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria; 5Department of Dermatology, University of Freiburg, Freiburg, Germany; 6Department of Dermatology, The Saarland University Hospital, Homburg/Saar, Germany; 7Department of Dermatology, University of Bonn, Bonn, Germany; 8Department of Dermatology, Charite-University Medicine Berlin, Berlin, Germany; 9Department of Dermatology, Academic Medical Centre, Lemgo, Germany and 10Department of Dermatology, Academic Medical Centre, Minden, Germany Sezary syndrome (SS) is a rare, aggressive CD4 þ cutaneous While MF usually is a slowly progressive disease, SS runs a more T-cell lymphoma (CTCL); molecular traits differentiating SS aggressive course with a high mortality rate and a median survival from nonleukemic mycosis fungoides (MF) and from inflamma- time of 2–4 years. The probability of survival in CTCL can be tory skin diseases (ID) are not sufficiently characterized. accurately predicted by a formula based on the clinical CTCL- Peripheral blood mononuclear cells (PBMC) of 10 SS patients 1 and 10 healthy donors (HD) were screened by Affymetrix severity index (CTCL-SI) that evaluates the involvement of the skin, 2 U133Plus2.0 chips for differential gene expression. Ten candi- lymph nodes, blood and visceral organs. date genes were confirmed by qRT-PCR to be significantly Sezary cells are malignant circulating CD4 þ T cells that þ overexpressed in CD4 T cells of SS versus HD/ID. For easier derive from the same T-cell clone as the malignant T cells in skin clinical use, these genes were re-analyzed in PBMC; qRT-PCR and other organs as demonstrated by T-cell receptor (TCR) gene confirmed five novel (DNM3, IGFL2, CDO1, NEDD4L, KLHDC5) 3,4 and two known genes (PLS3, TNFSF11) to be significantly rearrangement analysis studies. The detection of Sezary cells overexpressed in SS. Multiple logistic regression analysis in the peripheral blood is primarily based on morphological revealed that CDO1 and DNM3 had the highest discriminative features such as cerebriform nuclei; therefore, ‘Sezary cells’ may power in combination. Upon comparison of PBMC and skin be detected in healthy individuals as well as in inflammatory samples of SS versus MF, CDO1 and DNM3 were found dermatoses. As a consequence, an arbitrary threshold has been upregulated only in SS. Using anti-CDO1 antisera, differential set at 5% (20%) Sezary cells among peripheral blood mono- expression of CDO1 protein was confirmed in SS CD4 þ T cells. Interestingly, DNM3 and CDO1 are known to be regulated by nuclear cells (peripheral blood lymphocytes) for the diagnosis of SS-associated transcription factors TWIST1 and c-myb, respec- SS in the blood. Loss of CD26 or CD7, expression of CD158k/ tively. Furthermore, CDO1 catalyzes taurine synthesis and KIR3DL2, analysis of Her2 neu gene copy number, and lack of taurine inhibits apoptosis and promotes chemoprotection. In T regulatory cells may be informative,5,6 but only apply to a summary, CDO1 and DNM3 may improve the diagnosis of SS subpopulation of SS patients. Recently, multi-gene qRT-PCR was and open novel clues to its pathogenesis. proposed to improve the molecular diagnosis of SS cells in the Leukemia (2008) 22, 393–399; doi:10.1038/sj.leu.2405044; peripheral blood, but the method still awaits confirmation by published online 22 November 2007 7 Keywords: Se´zary syndrome; DNA arrays; cysteine dioxygenase; other groups and validation using independent patient samples. dynamin 3; diagnostic markers In SS and MF, chemotherapy does not improve survival, but impairs quality of life; due to frequent recurrences, allogeneic bone marrow transplantation is no successful treatment option either. Stage-adapted therapy as pursued currently by most groups Introduction aims at mitigating the course of the disease, but a potentially curative treatment regimen for SS or MF does not exist, indicating the urgent necessity to identify novel therapeutic targets. Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproli- We here performed Affymetrix microarray-based gene ex- ferative disorders that are characterized by localization of malignant pression profiling of SS peripheral blood mononuclear cells T lymphocytes in the skin, mainly in the epidermis. The classical (PBMC) versus healthy controls followed by qRT-PCR and forms of CTCL are plaque-type mycosis fungoides (MF) and Sezary statistical analysis to identify and validate candidate genes as syndrome (SS). SS is a rare, leukemic variant of CTCL that typically novel diagnostic markers and putative therapeutic targets for the presents with erythroderma, peripheral lymphadenopathy, severe disease. We also assessed the predictive capacity of SS- pruritus and malignant, circulating T lymphocytes, the Sezary cells. associated genes identified by others. Correspondence: Dr N Booken, Department of Dermatology, Venerolo gy and Allergology, University Medical Center Mannheim, Ruprecht-Karl University Heidelberg, Theodor-Kutzer-Ufer 1-3, Patients, materials and methods D-68167 Mannheim, Germany. E-mail: [email protected] 11These authors contributed equally to this work. Patients Received 18 April 2007; revised 13 October 2007; accepted 24 A total of 41 CTCL patients were included in the study, 27 October 2007; published online 22 November 2007 patients with SS (14 male and 13 female), median age 68 years, Se´zary syndrome gene expression N Booken et al 394 ranging from 48 to 83 years, stage III/IVA and 14 patients with U133 Plus 2.0 Arrays from Affymetrix (ten control samples and MF (10 male and 4 female), median age 59 years, ranging from ten samples from SS patients) were utilized. Raw data from 16 to 95 years, stage IB-IVA. The patients were diagnosed Affymetrix CEL files were analyzed using SAS software package according to the WHO-EORTC classification of cutaneous Microarray Solution version 1.3 (SAS Institute, Cary NC). Gene lymphomas and the criteria of the International Society of annotation was obtained through the Affymetrix NetAffx website Cutaneous Lymphomas. The extent of CTCL involvement was (http://www.affymetrix.com/analysis/index.affx). The quality quantified by the CTCL-SI.2 Analysis of the TCR g or b chain control, normalisation and statistical modeling were performed genes was performed using the well-established polymerase by array group correlation, mixed model normalisation and chain reaction-based GeneScan technique.3 All patients with SS mixed model analysis, respectively. Analysis of differential gene had erythroderma, peripheral lymphadenopathies, a highly expression was based on a loglinear mixed model of perfect elevated CD4/CD8 ratio and atypical circulating Sezary cells matches,8 where group (SS or control) were considered to be in the blood (Supplementary Table 1). For comparative analysis, with constant effects and the chip ID with random effect. blood samples were obtained from 10 healthy donors (4 males and 6 females, median age 57 years, ranging from 34 to 84 years). In addition for qRT-PCR experiments, peripheral blood Real-time RT–PCR analysis samples and lesional skin biopsy specimens of 24 patients with RT–PCR analysis was used to determine lack of gene expression different inflammatory skin diseases (ID) such as psoriasis (16 of candidate genes in CD4 þ T cells of healthy donors and ID patients, 13 male and 3 female, median age 53 years, ranging versus SS patients. Primers used were from Metabion (Martins- from 28 to 76 years), atopic dermatitis (6 patients, 5 male and 1 ried, Germany); primer sequences and the standard RT–PCR female, median age 46 years, ranging from 24 to 78 years) and procedures applied will be supplied by the authors upon erysipelas (2 patients, 1 male and 1 female of 28 and 78 years of request. Real-time PCR analysis was performed using TaqMan age) were obtained. Furthermore 15 additional samples of PCR master mix (Applied Biosystems, Darmstadt, Germany) healthy donors (5 male and 10 female, median age 48 years, together with TaqMan probes and primers (MWG-Biotech, ranging from 25 to 89 years) and peripheral blood T cells Martinsried, Germany) using standard conditions. Each primer activated for 3 days with phytohemagglutinin were also and probe concentration was optimized before use. The included in the study (Supplementary Text 1). Sezary cell lines sequences and concentrations used for quantification of the (SeAx, HH and Hut 78), MF cell line (Myla), leukemia cell lines selected genes are listed in the Supplementary Table 2. Human (Molt, Peer) were used as a calibrators for real-time RT–PCR GAPD was used as an internal control. The experiments were analysis. The study was approved by the Medical Ethics
Recommended publications
  • Dynamin Functions and Ligands: Classical Mechanisms Behind
    1521-0111/91/2/123–134$25.00 http://dx.doi.org/10.1124/mol.116.105064 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:123–134, February 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW Dynamin Functions and Ligands: Classical Mechanisms Behind Mahaveer Singh, Hemant R. Jadhav, and Tanya Bhatt Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India Received May 5, 2016; accepted November 17, 2016 Downloaded from ABSTRACT Dynamin is a GTPase that plays a vital role in clathrin-dependent pathophysiology of various disorders, such as Alzheimer’s disease, endocytosis and other vesicular trafficking processes by acting Parkinson’s disease, Huntington’s disease, Charcot-Marie-Tooth as a pair of molecular scissors for newly formed vesicles originating disease, heart failure, schizophrenia, epilepsy, cancer, dominant ’ from the plasma membrane. Dynamins and related proteins are optic atrophy, osteoporosis, and Down s syndrome. This review is molpharm.aspetjournals.org important components for the cleavage of clathrin-coated vesicles, an attempt to illustrate the dynamin-related mechanisms involved phagosomes, and mitochondria. These proteins help in organelle in the above-mentioned disorders and to help medicinal chemists division, viral resistance, and mitochondrial fusion/fission. Dys- to design novel dynamin ligands, which could be useful in the function and mutations in dynamin have been implicated in the treatment of dynamin-related disorders. Introduction GTP hydrolysis–dependent conformational change of GTPase dynamin assists in membrane fission, leading to the generation Dynamins were originally discovered in the brain and identi- of endocytic vesicles (Praefcke and McMahon, 2004; Ferguson at ASPET Journals on September 23, 2021 fied as microtubule binding partners.
    [Show full text]
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson’S Disease
    cells Review Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson’s Disease Giulia Lamonaca and Mattia Volta * Institute for Biomedicine, Eurac Research-Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0471-055483 Received: 4 April 2020; Accepted: 23 April 2020; Published: 30 April 2020 Abstract: The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson’s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely “tipped over the edge” and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential “molecular timeline” of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process. Keywords: LRRK2; autophagy; Parkinson’s disease; alpha-synuclein; synaptic transmission; neuropathology 1.
    [Show full text]
  • Molecular Dynamics and Evolutionary Aspects of the Transition from the Fully Grown Oocyte to Embryo
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo Alexei V. Evsikov,1,5 Joel H. Graber,1 J. Michael Brockman,1,2 Aleš Hampl,3 Andrea E. Holbrook,1 Priyam Singh,1,2 John J. Eppig,1 Davor Solter,1,4 and Barbara B. Knowles1 1The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 2 Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; 3Masaryk University Brno and Institute of Experimental Medicine, 625 00 Brno, Czech Republic; 4Max Planck Institute of Immunobiology, 79108 Freiburg, Germany Fully grown oocytes (FGOs) contain all the necessary transcripts to activate molecular pathways underlying the oocyte-to-embryo transition (OET). To elucidate this critical period of development, an extensive survey of the FGO transcriptome was performed by analyzing 19,000 expressed sequence tags of the Mus musculus FGO cDNA library. Expression of 5400 genes and transposable elements is reported. For a majority of genes expressed in mouse FGOs, homologs transcribed in eggs of Xenopus laevis or Ciona intestinalis were found, pinpointing evolutionary conservation of most regulatory cascades underlying the OET in chordates. A large proportion of identified genes belongs to several gene families with oocyte-restricted expression, a likely result of lineage-specific genomic duplications. Gene loss by mutation and expression in female germline of retrotransposed genes specific to M. musculus is documented. These findings indicate rapid diversification of genes involved in female reproduction. Comparison of the FGO and two-cell embryo transcriptomes demarcated the processes important for oogenesis from those involved in OET and identified novel motifs in maternal mRNAs associated with transcript stability.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012)
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2012 Conserved and Novel Properties of Clathrin- Mediated Endocytosis in Dictyostelium Discoideum Laura Macro Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Macro, Laura, "Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012). Student Theses and Dissertations. Paper 163. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Laura Macro June 2012 © Copyright by Laura Macro 2012 CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM Laura Macro, Ph.D. The Rockefeller University 2012 The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. Clathrin functions with a network of interacting accessory proteins, one of which is the adaptor complex AP-2, to co-ordinate vesicle formation. Disruption of genes involved in clathrin-mediated endocytosis causes embryonic lethality in multicellular animals suggesting that clathrin-mediated endocytosis is a fundamental cellular process. However, loss of clathrin-mediated endocytosis genes in single cell eukaryotes, such as S.cerevisiae (yeast), does not cause lethality, suggesting that clathrin may convey specific advantages for multicellularity.
    [Show full text]
  • Role of Dynamin, Synaptojanin, and Endophilin in Podocyte Foot Processes
    Role of dynamin, synaptojanin, and endophilin in podocyte foot processes Keita Soda, … , Pietro De Camilli, Shuta Ishibe J Clin Invest. 2012;122(12):4401-4411. https://doi.org/10.1172/JCI65289. Research Article Podocytes are specialized cells that play an integral role in the renal glomerular filtration barrier via their foot processes. The foot processes form a highly organized structure, the disruption of which causes nephrotic syndrome. Interestingly, several similarities have been observed between mechanisms that govern podocyte organization and mechanisms that mediate neuronal synapse development. Dynamin, synaptojanin, and endophilin are functional partners in synaptic vesicle recycling via interconnected actions in clathrin-mediated endocytosis and actin dynamics in neurons. A role of dynamin in the maintenance of the kidney filtration barrier via an action on the actin cytoskeleton of podocytes was suggested. Here we used a conditional double-KO of dynamin 1 (Dnm1) and Dnm2 in mouse podocytes to confirm dynamin’s role in podocyte foot process maintenance. In addition, we demonstrated that while synaptojanin 1 (Synj1) KO mice and endophilin 1 (Sh3gl2), endophilin 2 (Sh3gl1), and endophilin 3 (Sh3gl3) triple-KO mice had grossly normal embryonic development, these mutants failed to establish a normal filtration barrier and exhibited severe proteinuria due to abnormal podocyte foot process formation. These results strongly implicate a protein network that functions at the interface between endocytosis and actin at neuronal synapses in the formation and maintenance of the kidney glomerular filtration barrier. Find the latest version: https://jci.me/65289/pdf Related Commentary, page 4330 Research article Role of dynamin, synaptojanin, and endophilin in podocyte foot processes Keita Soda,1 Daniel M.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Integrating Protein Copy Numbers with Interaction Networks to Quantify Stoichiometry in Mammalian Endocytosis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Integrating protein copy numbers with interaction networks to quantify stoichiometry in mammalian endocytosis Daisy Duan1, Meretta Hanson1, David O. Holland2, Margaret E Johnson1* 1TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218. 2NIH, Bethesda, MD, 20892. *Corresponding Author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with identical genomes, copy numbers further vary significantly both in absolute and relative abundance. These variations contain essential information about each protein’s function, but how significant are these variations and how can they be quantified to infer useful functional behavior? Here, we address this by quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology (e.g.
    [Show full text]
  • Supplementary Table 8. Cpcp PPI Network Details for Significantly Changed Proteins, As Identified in 3.2, Underlying Each of the Five Functional Domains
    Supplementary Table 8. cPCP PPI network details for significantly changed proteins, as identified in 3.2, underlying each of the five functional domains. The network nodes represent each significant protein, followed by the list of interactors. Note that identifiers were converted to gene names to facilitate PPI database queries. Functional Domain Node Interactors Development and Park7 Rack1 differentiation Kcnma1 Atp6v1a Ywhae Ywhaz Pgls Hsd3b7 Development and Prdx6 Ncoa3 differentiation Pla2g4a Sufu Ncf2 Gstp1 Grin2b Ywhae Pgls Hsd3b7 Development and Atp1a2 Kcnma1 differentiation Vamp2 Development and Cntn1 Prnp differentiation Ywhaz Clstn1 Dlg4 App Ywhae Ywhab Development and Rac1 Pak1 differentiation Cdc42 Rhoa Dlg4 Ctnnb1 Mapk9 Mapk8 Pik3cb Sod1 Rrad Epb41l2 Nono Ltbp1 Evi5 Rbm39 Aplp2 Smurf2 Grin1 Grin2b Xiap Chn2 Cav1 Cybb Pgls Ywhae Development and Hbb-b1 Atp5b differentiation Hba Kcnma1 Got1 Aldoa Ywhaz Pgls Hsd3b4 Hsd3b7 Ywhae Development and Myh6 Mybpc3 differentiation Prkce Ywhae Development and Amph Capn2 differentiation Ap2a2 Dnm1 Dnm3 Dnm2 Atp6v1a Ywhab Development and Dnm3 Bin1 differentiation Amph Pacsin1 Grb2 Ywhae Bsn Development and Eef2 Ywhaz differentiation Rpgrip1l Atp6v1a Nphp1 Iqcb1 Ezh2 Ywhae Ywhab Pgls Hsd3b7 Hsd3b4 Development and Gnai1 Dlg4 differentiation Development and Gnao1 Dlg4 differentiation Vamp2 App Ywhae Ywhab Development and Psmd3 Rpgrip1l differentiation Psmd4 Hmga2 Development and Thy1 Syp differentiation Atp6v1a App Ywhae Ywhaz Ywhab Hsd3b7 Hsd3b4 Development and Tubb2a Ywhaz differentiation Nphp4
    [Show full text]
  • Characterization of the Macrophage Transcriptome in Glomerulonephritis-Susceptible and -Resistant Rat Strains
    Genes and Immunity (2011) 12, 78–89 & 2011 Macmillan Publishers Limited All rights reserved 1466-4879/11 www.nature.com/gene ORIGINAL ARTICLE Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains K Maratou1, J Behmoaras2, C Fewings1, P Srivastava1, Z D’Souza1, J Smith3, L Game4, T Cook2 and T Aitman1 1Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London, UK; 2Centre for Complement and Inflammation Research, Imperial College London, London, UK; 3Renal Section, Imperial College London, London, UK and 4Genomics Laboratory, MRC Clinical Sciences Centre, London, UK Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. Wistar–Kyoto (WKY) rats show marked susceptibility to CRGN, whereas Lewis rats are resistant. Glomerular injury and crescent formation are macrophage dependent and mainly explained by seven quantitative trait loci (Crgn1–7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterized Crgn3–7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (45-fold change, o1% false discovery rate) for basal and LPS-stimulated macrophages. Moreover, we identified eight genes with differentially expressed alternatively spliced isoforms, by using an in-depth analysis at the probe level that allowed us to discard false positives owing to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation.
    [Show full text]