Reproductive Strategy of Spiny Gurnard Lepidotrigla Dieuzeidei Blanc and Hureau, 1973 from the South-Eastern Adriatic Sea

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Strategy of Spiny Gurnard Lepidotrigla Dieuzeidei Blanc and Hureau, 1973 from the South-Eastern Adriatic Sea ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 62 (1): 49 - 62, 2021 Reproductive strategy of spiny gurnard Lepidotrigla dieuzeidei Blanc and Hureau, 1973 from the south-eastern Adriatic Sea Tatjana DOBROSLAVIĆ1*, Alexis CONIDES2, Jadranka SULIĆ ŠPREM3, Branko GLAMUZINA1 and Vlasta BARTULOVIĆ1 1University of Dubrovnik, Department of Applied Ecology, Ćira Carića 4, Dubrovnik, Croatia 2Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, Anavyssos, Greece 3Dubrovnik Natural History Museum, Dubrovnik, Croatia *Corresponding author: [email protected] This study provides the first data on the reproductive biology of the spiny gurnard Lepidotrigla dieuzeidei. A total of 1027 individuals were collected monthly from September 2011 to August 2012. The total length of the individuals in the sample ranged from 7.46 cm to 14.62 cm with a female to male ratio of 1 to 0.59. Positive allometric growth was observed for both females (b=3.07) and males (b=3.08). Variations of condition factor were similar in both sexes with mean values of 1.07 for females and 1.01 for males. The fish L. dieuzeidei had a long spawning period extending from November to July based on monthly values of gonadosomatic index. Histological analysis showed that this fish was multiple synchronous developments of ovaries with multiple spawning events. The ovaries were always represented with a group of primary oocytes and a diverse population of vitel- logenic oocytes, each specially recruited during the final stages of maturation in uniform or uneven phases. Batch fecundity was estimated gravimetrically using the hydrated oocyte method and was estimated to be around 558 to 10.230 oocytes per female. L. dieuzeidei is an important by-catch species and data from this study represent a valuable contribution to stock management Key words: oogenesis; spermatogenesis; gonad maturation; fecundity; oocyte diameter; multiple spawning fishes INTRODUCTION directed at a restricted number of target species. The main target fish species for the demersal Fisheries of deeper Adriatic Sea waters are trawl fishery are European hake (Merluccius mainly executed at depths of 200-300 m and merluccius), red mullet (Mullus barbatus bar- it represents the largest area of occurrence of batus), breams (Pagellus spp.), whiting (Mer- demersal shared stocks in the Mediterranean. langius merlangus), anglerfish (Lophius spp.), Many different fishing gears exploit the demer- flatfish (Solea solea, Scophthalmus maximus, sal communities but trawl net represents the Scophthalmus rhombus, Platichthys flesus). main gear in terms of catch and fleet power Studies of the impact of fishing have mostly (CADDY, 1993; SÁNCHEZ et al., 2007). However, focused on the target and economically impor- trawling exploitation in the Adriatic Sea is tant species and little is known about the impact 50 ACTA ADRIATICA, 62 (1): 49 - 62, 2021 Considering the lack of crucial biological data for this species, the main objective of this study was to investigate the annual reproductive cycle of L. dieuzeidei in the Adriatic Sea. Sex ratio, length at sexually maturity, gonadoso- matic index, fecundity, gonad development and oocyte size were analysed to obtain insight into the spawning activity for this by-catch species. Knowledge of reproductive biology of a fish species is essential for stock assessment and effective fishery management. MATERIAL AND METHODS Fig. 1. Location of commercial fishing from town Dubrovnik to the north point of Pelješac peninsula (line), southern Adriatic Sea Sampling site, procedure and measurements to non-target species that have none or small Samples were collected from south Croatian economic value and have been characterized as offshore waters between the city of Dubrovnik by-catch species. One of the frequent by-catch and the north point of Pelješac peninsula (Fig. species is spiny gurnard Lepidotrigla dieuzeidei 1). A total of 1027 individuals were collected Blanc & Hureau, 1973 from the family Trigli- monthly, from September 2011 to August 2012. dae. It is a small benthic species distributed in Specimens were caught at depths between 170 the eastern Atlantic and the western and mid- and 230 m using bottom trawl net (2 hauls, dle Mediterranean Sea and it prefers sandy and each lasted for approximately 5 h) during com- muddy bottoms at a depth between 60 and 180 m mercial fishing activities (vessel engine power (JARDAS, 1996). There are around 114 species of 60kw). The total length of the net was 45 m family Triglidae in the world and only 8 species with a mesh size of 60 mm and cod-end 24 divided into 5 genera exist in the Mediterranean mm, measured knot to knot. After catching all and the Adriatic Sea. L. dieuzeidei and large- specimens were put on ice and transported to scaled gurnard, L. cavillone are the only rep- the laboratory for further analysis. For each fish, resentatives of the genus Lepidotrigla. Despite total length (Lt) was measured using a simple the high abundance of gurnard species, little is calliper to the nearest 0.1 mm and weighed (W) known about the biology of L. dieuzeidei, espe- to the nearest 0.1 g. Fishes were gutted, and cially reproduction data. For the Adriatic Sea, gonads were removed and weighed (Wg) with only available data for this species is an elliptic three decimal accuracy. Sex was determined by analysis of otoliths (MONTANINI et al., 2010). macroscopic observation of the gonads (MACER, Previous studies in other parts of the Medi- 1974). To test differences in relation to the terranean are based on the first record with the expected ratio 1:1, the sex ratio was examined morphometric and meristic description of this using Chi-square (χ2) test with a probability species (ERYILMAZ, 2002; BAÑÓN, 2004; DALYAN level of 0.05. Age was estimated by interpreting & ERYILMAZ, 2006). The weight-length relation- growth rings on otoliths from 200 individuals. ship was investigated in the Mediterranean After removal otoliths were cleaned in distilled (TORRES et al., 2012; BAŞUSTA et al., 2013a) and in water, immersed in glycerol and examined with the south coast of Portugal (OLIM & BORGES, stereomicroscope on a black background under 2006) while the age and growth and relationship reflected light. Some otoliths were polished with between total length and otoliths dimensions sandpaper (type P220 and P80) due to calcium were analysed in the northeast Mediterranean accumulation. Age estimations were made by (BAŞUSTA et al., 2013b; BAŞUSTA et al., 2017). three readers if the readings did not coincide Dobroslavić et al: Reproductive strategy of spiny gurnard Lepidotrigla dieuzeidei Blanc and Hureau, 1973 ... 51 the otolith was rejected. Transparent and opaque lace and Selman (1981) and testes TAKASHIMA rings were counted, one transparent and one & HIBIYA (1995). For quantitative analysis oocyte opaque ring was considered as one year. diameter was measured using an image analy- sis system (AxioVision Release 4.8. software). Data analysis Male germ cells were classified as spermato- gonia (Sg), spermatocytes (St), spermatids (Sd) Growth was analysed using von Bertalanffy and spermatozoa (Sz) (GRIER, 1981). growth equation: Lt = , where is the asymptotic It should be noted that the selection of the length, k is the growth coefficient, and is the ovaries used for fecundity estimation was based hypothetical age for Lt=0 (TOMLINSON & NOR- on gonad histological sections showing that MAN, 1961). To describe the length-weight rela- postovulatory follicles were not present. Batch tionship, allometric growth equation was used: fecundity was estimated gravimetrically using W = a*Lb (RICKER, 1977), where W is the total the hydrated oocyte method, where only oocytes weight (g), L is the total length (mm) and a and larger than 500 µm were counted (HUNTER et al., b are constants estimated by last square method. 1985). For each selected ovarian sample, three Fultonʼs condition factor was calculated follow- subsamples of 0.01 g from the anterior, central ing Froese (2006): K=, where W is total body and posterior region of the gonad lobe were weight (g) and L is the total length (mm). taken for counting migratory nuclei and hydrat- The spawning period was established based ed oocytes. Batch fecundity for each female was on the monthly variation of the gonadosomatic estimated as the mean value of three subsamples index (GSI) and calculated as GSI = 100*Wg that have been calculated as the number of the / W, where Wg is gonad weight (g) and W is migratory nuclei and hydrated oocytes per unit the total weight (g) (RICKER, 1977). To estimate weight of the subsample and the total weight size at first sexual maturity, the data were fitted of the gonad. Regression analyses were car- in the equation: P = 1/(1+e(a-b*L)); where P ried out relating fecundity to total length (Lt), is the probability that individuals are sexually total weight (W) and gonad weight (Wg). The matured, L is their length and a, b coefficients. relationships fecundity-length, fecundity-weight The length when 50% of analysed individu- and fecundity-gonad weight were express by als were mature was calculated according to equation F = a, where F is the fecundity, X either SPARRE & VENEMA (1998) as L50%=a/b. Lt, W or Wg, a is the constant and b is the expo- For histological analysis 30 individuals, ran- nent (BAGENAL, 1978). domly selected, from both sexes were used monthly. After weighing, gonads were fixed in Statistical analysis 8% buffered formalin. A small piece of tissue from the middle of the gonad was tested. After Comparison between means was performed dehydration and clearing, tissue was embedded using ANOVA test with multiple comparison in paraffin, sectioned on a microtome (5 µm) tests (Tykey and Duncan) to identify similar- and stained with hematoxylin and eosin dye. All ity groups. Relations between time-series was histological sections of ovaries were classified analysed using the Cross Correlation Function to assess the oocyte developing phase accord- (CCF) while the statistical difference between ing to TYLER & SUMPTER (1996) and BROWN- time series was analysed using the chi-square PETERSON et al.
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
    SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan
    [Show full text]
  • Trigloporus Lastoviza, Bonnaterre, 1788
    International Journal of Fisheries and Aquatic Studies 2015; 3(1): 75-80 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 Age, growth and mortality of Streaked Gurnard (GIF) Impact Factor: 0.352 IJFAS 2015; 3(1): 75-80 © 2015 IJFAS (Trigloporus lastoviza, Bonnaterre, 1788) in the Egyptian www.fisheriesjournal.com Mediterranean waters off Alexandria Received: 11-06-2015 Accepted: 13-07-2015 Sabry S El-Serafy, Fahmy I El-Gammal, Sahar F Mehanna, Nasr-Allah H Sabry S El-Serafy Zoology Department, Faculty of Abdel- Hameid, Elsayed FE Farrag Science, Benha University. Abstract Fahmy I El-Gammal Age, growth and mortality of Streaked Gurnard Trigloporus lastoviza from the Egyptian Mediterranean Fisheries Department, National waters off Alexandria were investigated between the period from July 2009 and August 2010. The Institute of Oceanography and observed maximum age was 4 years for both sexes based on otolith readings. The length-weight Fisheries. relationship was estimated as W=0.0088L3.0694 (r=0.9854); W=0.0085L3.0836 (r=0.9803) and W=0.0106L3.0058 (r=0.9853) for males, females and combined sexes respectively. The von Bertalanffy Sahar F Mehanna Fisheries Department, National growth equations for length were: Lt=27.17 (1-e-0.3466 (t+1.01), Lt = 27.0 (1 - e -0.3703 (t + 0.93) and Institute of Oceanography and Lt = 26.92 (1 - e -0.3699 (t + 0.92) for males, females and combined sexes respectively. The growth Fisheries. performance index value (Φ) was calculated as 2.41, 2.43 and 2.43 for males, females and combined sexes respectively.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • A New Species of Lepidotrigla (Scorpaeniformes, Triglidae) from the Waters Off Northern Australia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256348384 A new species of Lepidotrigla (Scorpaeniformes, Triglidae) from the waters off Northern Australia. Article in The Beagle: Records of the Museums and Art Galleries of the Northern Territory · December 1995 DOI: 10.5962/p.264284 CITATION READS 1 176 2 authors: Lluís del Cerro Domingo Lloris University of Barcelona Spanish National Research Council 7 PUBLICATIONS 3 CITATIONS 141 PUBLICATIONS 2,271 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Critic aspects of Biology in general and Darwinism View project Worldwide revision of the family Triglidae View project All content following this page was uploaded by Domingo Lloris on 21 May 2014. The user has requested enhancement of the downloaded file. A NEW SPECIES OF LEPIDOTRIGLA (SCORPAENIFORMES: TRlGLIDAE) FROM THE W A TERS OFF NORTHERN AUSTRALIA. LLUÍS DEL CERRO AND DOMÉNEC LLORIS Instiiut de Ciéncíes del Mar (C.S.l.c.), Passeig lQan de Borbó, sin 08039, Barcelona, Spain. ABSTRACT , . A new species of the family Triglidae, Lepidorrigla russelli sp. nov. , from the waters off the Northem Territory and Queensland (Au'stralia) ii presented. The new laxon is compared with its similar relatives in !he genus LepidotTigla Günther, 1860: L. faurei Gilchrist and Thompson, 1914, and L. cadmani Regan, 1915. Brief comments on the genus Lepidorrigla are included. KEYWORDS: Triglidae, Lepidorrigla russelli, sp. nov., taxonomy, new species, F.A.O. Fishing Area 71 , northem Australia, eastem Australia. INTRODUCTION Measurements and counts of body parts are a combination of methods of Hubbs and Lagler As part of a general study on ¡he systematics (1958), Teague (1951), Richards (1968), and of supra-specific taxa of the family Triglidae, a Richards and Saksena (1977), with the excep­ large number of specimens collected in different lion of the following characters.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Fish Brains: Evolution and Environmental Relationships
    Reviews in Fish Biology and Fisheries 8, 373±408 (1998) Fish brains: evolution and environmental relationships K. KOTRSCHAL1,Ã, M.J. VAN STAADEN2,3 and R. HUBER2,3 1Institute of Zoology, Department of Ethology, The University of Vienna and Konrad Lorenz Forschungsstelle, A±4645 GruÈnau 11, Austria 2Institute of Zoology, Department of Physiology, The University of Graz, UniversitaÈtsplatz 2, A±8010 Graz, Austria 3Department of Biological Sciences, Bowling Green State University, Life Science Bldg, Bowling Green, OH 43403, USA Contents Abstract page 373 Fish brains re¯ect an enormous evolutionary radiation 374 Based on morphology: how conclusions on sensory orientation are reached 376 Structure of ®sh brains 378 Large-scale evolutionary patterns of ®sh brains 384 Functional diversi®cation 386 Cyprinidae Gadidae Flat®shes Cichlidae and other modern perciforms How environments shape brains: turbidity, benthos and the pelagic realms 393 Variation of brain and senses with depth 395 Ontogenetic variation: a means of adaptation? 398 Intraspeci®c variation between `adult' age classes Intraspeci®c variation within age classes Conclusions: where to go from here? 400 Acknowledgements 401 References 402 Abstract Fish brains and sensory organs may vary greatly between species. With an estimated total of 25 000 species, ®sh represent the largest radiation of vertebrates. From the agnathans to the teleosts, they span an enormous taxonomic range and occupy virtually all aquatic habitats. This diversity offers ample opportunity to relate ecology with brains and sensory systems. In a broadly comparative approach emphasizing teleosts, we surveyed `classical' and more recent contributions on ®sh brains in search of evolutionary and ecological conditions of central nervous system diversi®cation.
    [Show full text]
  • Field Guide to the Searobins in the Western North Atlantic
    NOAA Technical Report NMFS 107 March 1992 Field Guide to the Searobins (Prionotus and Bellator) in the Western North Atlantic Mike Russell Mark Grace ElmerJ. Gutherz U.S. Department ofCommerce NOAA Technical Report NMFS The major responsibilities ofthe National Marine Fish­ continuing programs ofNMFS; intensive scientific reports eries Service (NMFS) are to monitor and assess the abun­ on studies of restricted scope; papers on applied fishery dance and geographic distribution of fishery resources, problems; technical reports of general interest intended to understand and predict fluctuations in the quantity to aid conservation and management; reports that re­ and distribution ofthese resources, and to establish levels view, in considerable detail and at high technical level, for their optimum use. NMFS is also charged with the certain broad areas ofresearch; and technical papers origi­ development and implementation of policies for manag­ nating in economic studies and in management investi­ ing national fishing grounds, with the development and gations. Since this is a formal series, all submitted papers, enforcement of domestic fisheries regulations, with the except those of the U.S.-Japan series on aquaculture, surveillance offoreign fishing off U.S. coastal waters, and receive peer review and all papers, once accepted, re­ with the development and enforcement of international ceive professional editing before publication. fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic Copies of NOAA Technical Reports NMFS are avail­ analysis programs and through mortgage insurance and able free in limited numbers to government agencies, vessel construction subsidies. Itcollects, analyzes, and pub­ both federal and state.
    [Show full text]
  • Miscellaneous Demersal Fishes Capture Production by Species, Fishing Areas and Countries Or Areas B-34 Poissons Démersaux Diver
    173 Miscellaneous demersal fishes Capture production by species, fishing areas and countries or areas B-34 Poissons démersaux divers Captures par espèces, zones de pêche et pays ou zones Peces demersales diversos Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Especie, Área de pesca t t t t t t t t t t Greater argentine ...B ...C Argentina silus 1,23(05)015,03 ARU 27 Netherlands ... ... ... ... ... ... 2 611 10 662 3 637 1 062 Norway ... ... ... ... ... ... ... ... ... 1 820 27 Fishing area total ... ... ... ... ... ... 2 611 10 662 3 637 2 882 Species total ... ... ... ... ... ... 2 611 10 662 3 637 2 882 Argentine ...B ...C Argentina sphyraena 1,23(05)015,04 ARY 27 Netherlands ... ... ... ... ... ... - - 2 232 3 566 Norway ... ... ... ... ... ... ... ... ... 2 584 27 Fishing area total ... ... ... ... ... ... ... ... 2 232 6 150 Species total ... ... ... ... ... ... ... ... 2 232 6 150 Argentines Argentines Argentinas Argentina spp 1,23(05)015,XX ARG 21 Canada 591 51 12 8 17 20 12 1 3 1 Cuba 553 4 5 - - - - - - - Russian Fed - - - 5 - - - - - - 21 Fishing area total 1 144 55 17 13 17 20 12 1 3 1 27 Denmark 1 455 748 1 420 1 039 916 614 918 910 470 335 Faroe Is 8 433 17 167 8 186 6 388 9 572 7 058 6 264 3 441 7 055 12 576 France - - 114 55 41 1 - 147 11 - Germany 1 498 633 24 483 189 150 164 1 086 181 219 Iceland 3 367 13 387 5 495 4 595 2 478 4 357 2 680 3 645 - 4 776 Ireland 1 089 405 396 4 709 7 505 7 592 96 82 20 - Netherlands 4 696 4 964 8 033 3 636 3 659 4 213 - - - - Norway 5 167 8 654 7 823 6 107 14 876 7 406 8 351 11 577 17 073 20 744 Portugal - - - - - - - - - 0 Russian Fed - - - 1 214 496 293 154 721 79 39 Spain - - - 34 34 3 7 18 19 50 Sweden 541 428 0 273 1 010 484 42 0 - 0 UK - - 28 - 7 955 4 862 109 579 75 5 27 Fishing area total 26 246 46 386 31 519 28 533 48 731 37 033 18 785 22 206 24 983 38 744 34 Morocco - - - - - - - 231 295 509 34 Fishing area total - - - - - - - 231 295 509 37 France - - 7 4 4 7 5 7 6 5 Morocco ..
    [Show full text]
  • Trawl Survey of Red Gurnard, John Dory, Tarakihi and Associated Species Off the Bay of Plenty, North Island, February 1999 (KAH9902)
    4 IWA Taihoro Nukurangi Trawl survey of red gurnard, John dory, tarakihi and associated species off the Bay of Plenty, North Island, February 1999 (KAH9902) M. Morrison, D. Parkinson Final Research Report for Ministry of Fisheries Research Project INT9803 National Institute of Water and Atmospheric Research November 1999 Final Research Report Report Title: Trawl survey of red gurnard, John dory, terakihi and associated species off the Bay of Plenty, North Island, February 1999 (KAH9902) Authors: M. Morrison, D. Parkinson 1. Date: 15/10/99 2. Contractor: NIWA 3. Project Title: Estimation of inshore fish abundance in the Bay of Plenty using trawl surveys 4. Project Code: INT9803 5. Project Leader: M. Morrison 6. Duration of Project: Start Date 1 October 1998 Expected End Date 30 September 1999 7. Executive Summary: A trawl survey of the Bay of Plenty was successfully completed during February 1999. Seventy eight stations were completed (50 phase 1, 28 phase 2) within 8 depth and area strata. Target c.v.s on biomass estimates were 15% for GUR, 20% for JDO, and 30% for TAR; achieved c.v.s were 14%, 14%, and 27% respectively. Length and weight information was also collected for all other QMS species in the catch, and for leatherjacket, frostfish, kahawai and kingfish. Red gurnard were caught throughout the Bay of Plenty, with relatively large individual catches occurring in the 10-100 m depth range. John dory were less common, with scattered larger catches. Relatively few tarakihi were encountered; most of the tows catching these fish were in deeper water in the middle of the survey area.
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Statistical Species Characterization of Gurnard Landings in North of Portugal
    Statistical Species characterization of Gurnard Landings in North of Portugal Feijó, D., Rocha A., Santos, P., Saborido-Rey, F. Diana Feijó Matosinhos, Portugal ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Work Proposal Study of Gurnards landings in Portugal Knowledge of Gurnards species composition Obtain accurate Statistical Landings (in Matosinhos, Portugal) ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Introduction Available ICES statistics concerning gurnards are not accurate. Gurnards are often not sorted by species when they are landed, usually ending up classified under one generic category of “gurnards”. Gurnards are considered by-catch in bottom trawl and in Artisanal gears, like beam trawl and trammel nets, although due to decrease of traditionally targeted species their interest and value has increased. ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Introduction For example, France has only reported “tub gurnard” since 1983 and Denmark, the Netherlands and Portugal since 2000. In portuguese official data (DGPA), all gurnards are classified under these designations: Tub gurnard (Trigla lucerna or C. lucernus ), Gurnard nep. (Trigla spp.) and Large-scaled gurnard (Lepidotrigla cavillone ). In Portugal, and especially in Matosinhos, landings are a mix of the 6 gurnard species found in Portuguese waters. ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Commercial Gurnards in Portugal ICES ANNUAL SCIENCE CONFERENCE
    [Show full text]