Copyrighted Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L'arithmétique De Pierre Fermat Dans Le Contexte De La Correspondance
ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques CATHERINE GOLDSTEIN L’arithmétique de Pierre Fermat dans le contexte de la correspondance de Mersenne : une approche microsociale Tome XVIII, no S2 (2009), p. 25-57. <http://afst.cedram.org/item?id=AFST_2009_6_18_S2_25_0> © Université Paul Sabatier, Toulouse, 2009, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’ac- cord avec les conditions générales d’utilisation (http://afst.cedram.org/ legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement person- nelle du copiste est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la Facult´e des Sciences de Toulouse Vol. XVIII, n◦ Sp´ecial, 2009 pp. 25–57 L’arithm´etique de Pierre Fermat dans le contexte de la correspondance de Mersenne : une approche microsociale Catherine Goldstein(∗) Les paradoxes de Pierre Fermat Un loup solitaire. ayant commerce de tous cˆot´es avec les savants1. Un magistrat concentr´e sur ses devoirs publics, notant ses observations math´ematiques comme s’il « s’occupa[i]t d’autre chose et se hˆata[i]t vers de plus hautes tˆaches », mais prˆet `a mobiliser tout Paris pour connaˆıtre les questions arithm´etiques qui y circulent etad´ ` efier l’Europe enti`ere avec les siennes2. -
A Tale of the Cycloid in Four Acts
A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries. -
Games, Gods and Gambling : the Origins and History of Probability and Statistical Ideas from the Earliest Times to the Newtonian Era
University of Calgary PRISM: University of Calgary's Digital Repository Alberta Gambling Research Institute Alberta Gambling Research Institute 1962 Games, gods and gambling : the origins and history of probability and statistical ideas from the earliest times to the Newtonian era David, F. N. (Florence Nightingale) Hafner Publishing Company http://hdl.handle.net/1880/41346 book Downloaded from PRISM: https://prism.ucalgary.ca Games, Gods and Gambling rc same author: 1 STATISTICAL PRIMER D. E. BARTON, B.Sc., Ph.D.: 2OMBINATORIAL CHANCE Signs of the Zodiac : floor mosaic, Beth-Aleph Synagogue, Palestine (5th century) Games, Gods and Gambling The origins and history of probability and statistical ideas from the earliest times to the Newtonian era F. N. DAVID, D.Sc. (University of London, University College) 1962 HAFNER PUBLISHING COMPANY NEW YORK Copyright 0 1962 CHARLES GRIFFIN & CO. LTD 42 DRURY LANE LONDON W.C.2 First Published in 1962 PRINTED IN GREAT BRpTAIN BY BELL AND BAIN, LTD., GLASOOW [S CONTINUING INTEREST AND ENCOURAGEMENT all we tell you? Tales, marvellous tales and stars and isles where good men rest, evermore the rose of sunset pales, ds and shadows fall toward the West. v beguile you? Death hath no repose and deeper than that Orient sand [ides the beauty and bright faith of those rde the Golden Journey to Samarkand. v they wait and whiten peaceably, mquerors, those poets, those so fair ; ow time comes, not only you and I, whole world shall whiten, here or there : lose long caravans that cross the plain untless feet and sound of silver bells 1 no more for glory or for gain, 8 more solace from the palm-girt wells ; le great markets by the sea shut fast calm Sunday that goes on and on, ven lovers find their peace at last, rth is but a star, that once had shone. -
European Mathematical Society
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark NEWSLETTER No. 42 Building 303 DK-2800 Kgs. Lyngby, Denmark December 2001 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute EMS Agenda ................................................................................................. 2 Jagiellonian University Reymonta 4 Editorial – Thomas Hintermann .................................................................. 3 30-059 Kraków, Poland e-mail: [email protected] KATHLEEN QUINN Executive Committee Meeting – Berlin ......................................................... 4 The Open University [address as above] e-mail: [email protected] EMS Council Elections .................................................................................. 8 SPECIALIST EDITORS INTERVIEWS Steen Markvorsen [address as above] New Members .............................................................................................. 10 SOCIETIES Krzysztof Ciesielski [address as above] Anniversaries – Pierre de Fermat by Klaus Barner .................................... 12 EDUCATION Tony Gardiner University of Birmingham Interview with Sergey P. Novikov ............................................................... 17 Birmingham B15 2TT, UK e-mail: [email protected] Obituary – Jacques-Louis -
Cronología1 C00 Parte I 1Portada1b
Cronología ilustrada de las finanzas Parte I De los tiempos antiguos a la modernidad 2800 a.C. a 1750 d.C. Instituciones, instrumentos y técnicas Ricardo A. Fornero Profesor de Administración Financiera Universidad Nacional de Cuyo (Mendoza-Argentina) 2012 (Volumen 2) Capítulo 8 FINANZAS PARA NUEVOS TIEMPOS De 1400 a 1500 Síntesis Las finanzas y la situación política y económica desde el siglo XV 1402 La banca Medici: El formato legal de asociados independientes y una sociedad controlante Ventana: El origen del sistema de asociación en Florencia 1404 La licitud de los contratos que consisten sólo en la asunción de riesgo 1408 La constitución del Banco di San Giorgio en Génova, como for- mato de banco para el financiamiento público Ventana: Mecanismo institucional de cumplimiento Ventana: El Palazzo di San Giorgio 1420 Las transacciones financieras en Génova: La Piazza y la Loggia dei Banchi 1423 Las dotaciones en dinero y la realización de préstamos en el im- perio otomano 1434 Los Monti de Florencia y las opciones sobre instrumentos finan- cieros 1445 La inclinación a apostar y el uso de las loterías como fuente de ingreso de los gobiernos 1449 Gutenberg y el financiamiento de la impresión de la Biblia: ¿Un préstamo o una asociación con Fust? 1460 La Bolsa de Amberes y el desarrollo de su mercado de cambios 363 8. Finanzas modernas De 1400 a 1500 1462 Lyon: De la feria a la Bolsa, y de centro financiero europeo a na- cional 1462 Mons pietatis y la aceptación papal del interés en los préstamos Ventana: Monte dei Paschi di Siena: El banco que comienza como Mons Pietatis 1478 La prédica cristiana contra la usura y el cuerpo del usurero 1489 Las respuestas de Flandes y de Venecia a la crisis de los bancos y del sistema de reserva fraccionaria 1490 Las actividades financieras en las doctrinas judías modernas 1498 La Sala de Contratación de la Lonja de Valencia: “Es bueno el comercio que no lleva el fraude en la palabra” 364 8. -
Notes and References
Notes and References CHAPTER 1 INTRODUCTION 1. For full details of Pascal's ancestry see Fric, R. (1923). 2. Cox, C. M. (1926), 691. 3. Mill ~gan to learn Greek at three and Latin at seven (Mill, J. S. (1873), 5-9). Etienne Pascal's educational methods differed from James Mill's in that Etienne would not teach his son Latin until he was twelve years old (4). 4. And perhaps earlier still, in view of the interest which Mersenne shared with him in the properties of sound. 5. Mesnard, J. (1963). 6. Henry, C. (1884). 7. Rouse Ball, W. W. (1920), 308-10. 8. Pascal thus relied, like his predecessors, on Euclid's Parallel Postulate. 9. Only a few copies of the Essay on Conic Sections were published. 10. de Robillard de Beaurepaire, C. -M. (1902). 11. Fran~ois, J. (1653), 22. Tallemant des Reaux, G. (1960-1), II 58 says '400 livres', in other words, about £2000 at today's prices. 12. The number of finished products was probably between twelve and thirty; the Pascalian calculator was generally manufactured according to the customer's personal specifications. Christiaan Huygens bought one, as did Leibniz, and two were bought by Marie-Louise de Gonzague, the wife of King John Casimir of Poland. Pascal gave one to Carcavi. 13. Concerning the Forton (or Saint-Ange) affair generally, see Jovy, E. (1927), Julien-Eymard d' Angers (1954), 147-8, 163 and Descrains, J. (1985), I 376-7. 14. The number of experiments carried out by or on behalf of Pascal has been a matter of speculation. -
Number Theory and the Queen of Mathematics
The Mathematics Enthusiast Volume 9 Number 1 Numbers 1 & 2 Article 9 1-2012 Number Theory and the Queen of Mathematics Megan Wagner Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Wagner, Megan (2012) "Number Theory and the Queen of Mathematics," The Mathematics Enthusiast: Vol. 9 : No. 1 , Article 9. Available at: https://scholarworks.umt.edu/tme/vol9/iss1/9 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol9, nos.1&2, p .193 Number Theory and the Queen of Mathematics Megan Wagner The University of Montana Introduction Geometry is an integral component of secondary mathematics curriculum. From my experience in a mathematics teacher preparation program, I have seen a real push to connect geometry to other areas of mathematics. Secondary geometry can often be presented without clear or any connections to other areas of mathematics. One main purpose of this paper is to explore geometry and its rightful connection to other areas of mathematics, specifically number theory. Such strong emphasis is placed on drawing connections to number theory because of its intrinsic value in enhancing understanding of mathematical concepts. Learning number theory has positive ramifications for students, making the transition from arithmetic to an introduction to algebra. It helps “students develop better understandings of the abstract conceptual structure of whole numbers and integers,” and it has important algebraic characteristics, which relate to variables and mathematical reasoning (Campbell & Zazkis, 2006, p.28). -
Pascal and Fermat: Religion, Probability, and Other Mathematical Discoveries
Skidmore College Creative Matter MALS Final Projects, 1995-2019 MALS 5-2016 Pascal and Fermat: Religion, Probability, and Other Mathematical Discoveries Adrienne E. Lazes Skidmore College Follow this and additional works at: https://creativematter.skidmore.edu/mals_stu_schol Part of the Logic and Foundations of Mathematics Commons Recommended Citation Lazes, Adrienne E., "Pascal and Fermat: Religion, Probability, and Other Mathematical Discoveries" (2016). MALS Final Projects, 1995-2019. 117. https://creativematter.skidmore.edu/mals_stu_schol/117 This Thesis is brought to you for free and open access by the MALS at Creative Matter. It has been accepted for inclusion in MALS Final Projects, 1995-2019 by an authorized administrator of Creative Matter. For more information, please contact [email protected]. Pascal and Fermat: Religion, Probability, and Other Mathematical Discoveries by Adrienne E. Lazes FINAL PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN LIBERAL STUDIES SKIDMORE COLLEGE APRIL 2016 Advisors: David Vella, Erica Bastress-Dukehart Lazes, Adrienne 1 Table of Contents Abstract ........................................................................................................................................... 2 Introduction ..................................................................................................................................... 3 Religion and the Scientific Revolution in France During the Seventeenth Century ...................... 4 Pascal and -
Salvaging Descartes' Géométrie
M e t e o r i t e Issue no. 4, Fall 2004. Meteorite is the student journal of philosophy at the University of Michigan – Ann Arbor. www.meteoritejournal.com All authors retain copyright on origi- nal works unless otherwise noted. This journal is funded by the Department of Philosophy at the University of Michigan – Ann Arbor. Salvaging Descartes’ Géométrie Jason B Hill University of Michigan—Flint Uppsala University After investigating various mathematical, historical and phi- losophical sources concerning René Descartes’ La Géométrie, I am convinced that this work is not understood in accordance with the original intent of its author. By using Descartes’ philosophical works, I’ll offer a different interpretation of this publication, and explain how poor interpretations have resulted in paradoxically beneficial impacts on mathematical knowledge. My aim is to connect early 17th Century Wes- tern intellectual discourse with the intent of Descartes in publishing this mathema- tical work, while looking beyond any mere categorical relation between Descartes and the church, or Descartes and the skeptics. Specifically, my goal is not to de- nounce these relations, but to broadly consider the interpersonal social and scienti- fic discourse of Descartes’ day, along with his personal experiences and philosophy, while attempting to construct a more accurate interpretation of La Géométrie. Such an interpretation is made possible by utilizing a method that both mathematicians and philosophers can easily follow, and this merely requires being familiar with certain key aspects of Descartes’ Discourse on the Method of Reasoning Well and Seeking Truth in the Sciences. René Descartes (1596-1650) is frequently considered the most influential ma- thematician and philosopher of the early 17th Century. -
PIM Age of Genius FM.Indd
THE AGE OF GENIUS 1300 to 1800 Michael J. Bradley, Ph.D. The Age of Genius: 1300 to 1800 Copyright © 2006 by Michael J. Bradley, Ph.D. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Chelsea House An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Bradley, Michael J. (Michael John), 1956– The age of genius : 1300 to 1800 / Michael J. Bradley. p. cm.—(Pioneers in mathematics) Includes bibliographical references and index. ISBN 0-8160-5424-X 1. Mathematicians—Biography. 2. Mathematics, Medieval. I. Title. QA28.B728 2006 510.92'2—dc22 2005032354 Chelsea House books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com Text design by Mary Susan Ryan-Flynn Cover design by Dorothy Preston Illustrations by Dale Williams Printed in the United States of America MP FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper. CONTENTS Preface vii Acknowledgments ix Introduction xi CHAPTER 1 Ghiyath¯ al-D¯ın Jamsh¯ıd Mas’u¯d al-Kash¯ ¯ı (ca. 1380–1429): Accurate Decimal Approximations 1 Early -
TME Volume 9, Numbers 1 and 2
The Mathematics Enthusiast Volume 9 Number 1 Numbers 1 & 2 Article 12 1-2012 TME Volume 9, Numbers 1 and 2 Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation (2012) "TME Volume 9, Numbers 1 and 2," The Mathematics Enthusiast: Vol. 9 : No. 1 , Article 12. Available at: https://scholarworks.umt.edu/tme/vol9/iss1/12 This Full Volume is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE MATHEMATICS ENTHUSIAST (formerly The Montana Mathematics Enthusiast) ISSN 1551-3440 Vol.9, Nos.1&2, January 2012, pp.1-232 1. Visualizations and intuitive reasoning in mathematics Kajsa Bråting (Sweden)………………………………………………………………………………..pp.1-18 2. If not, then what if as well- Unexpected Trigonometric Insights. Stanley Barkan (Israel)………………………………………………………………….……………pp.19-36 3. Mathematical Competitions in Hungary: Promoting a Tradition of Excellence & Creativity Julianna Connelly Stockton (USA)…………………………….…………………………………….pp.37-58 4. From conic intersections to toric intersections: The case of the isoptic curves of an ellipse Thierry Dana-Picard, Nurit Zehavi & Giora Mann (Israel)………………………………………..pp.59-76 5. Increasing the Use of Practical Activities through Changed Practice Frode Olav Haara & Kari Smith (Norway)…………………………………...……………………pp.77-110 6. Student Enrolment in Classes with Frequent Mathematical Discussion and Its Longitudinal Effect on Mathematics Achievement. Karl W. Kosko (USA)………………………………...……………………………………………pp.111-148 7. -
The Correspondence of Ren ´E Descartes 1643
The Correspondence of Rene´ Descartes 1643 edited by THEO VERBEEK ERIK-JAN BOS JEROEN VAN DE VEN with contributions of Henk Bos Carla Rita Palmerino Corinna Vermeulen Quaestiones Infinitae Publications of the Department of Philosophy Utrecht University Volume XLV Zeno Institute for Philosophy The Leiden–Utrecht Research Institute Heidelberglaan 8 3584 CS Utrecht The Netherlands c 2003, Th. Verbeek, E.-J. Bos, J.M.M. van de Ven All rights reserved. ISBN 90-393-3583-0 (ISSN 0927-3395) PREFACE There is little disagreement that the standard edition of Descartes by Charles Adam and Paul Tannery (known as AT) should be redone, in any case as far as the correspondence is concerned. The reason is not only that its chronology is defective and that in its latest reprint the edition is difficult to handle even for expert readers, but also that, after more than hundred years, the problems raised by the correspondence deserve a fresh examination. A grant by the Netherlands Organisation of scientific Research (NWO), ‘Towards a new critical edition of Descartes’, allowed me, not only to direct three Ph.D. theses (on Descartes’ cor- respondence with Regius by Erik-Jan Bos, on the Latin translation of the Dis- cours and the ‘essais’ by Corinna Vermeulen and on the publication history of Descartes’ works in the 17th century by Matthijs van Otegem), which can be seen as pilot studies for any new edition of Descartes’ works, but more specifically to lay the foundations for a new critical edition of Descartes’ correspondence. Together with Erik-Jan Bos, Matthijs van Otegem and Corinna Vermeulen and helped by an assistant (Hanneke Wit, Hans Diepenveen, Roeland Roelofs and Maarten van Houte successively) we worked through the correspondence, start- ing with vol.