Hypokalemia and Hyperkalemia ANTHONY J

Total Page:16

File Type:pdf, Size:1020Kb

Hypokalemia and Hyperkalemia ANTHONY J Potassium Disorders: Hypokalemia and Hyperkalemia ANTHONY J. VIERA, MD, MPH, and NOAH WOUK, MD, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina Hypokalemia and hyperkalemia are common electrolyte disorders caused by changes in potassium intake, altered excretion, or transcellular shifts. Diuretic use and gastrointestinal losses are common causes of hypokalemia, whereas kidney disease, hyperglycemia, and medication use are common causes of hyperkalemia. When severe, potassium disorders can lead to life-threatening cardiac conduction disturbances and neuromuscular dysfunction. Therefore, a first priority is determining the need for urgent treatment through a combination of history, physical examination, laboratory, and electrocardiography findings. Indications for urgent treatment include severe or symptomatic hypo- kalemia or hyperkalemia; abrupt changes in potassium levels; electrocardiography changes; or the presence of certain comorbid conditions. Hypokalemia is treated with oral or intravenous potassium. To prevent cardiac conduction dis- turbances, intravenous calcium is administered to patients with hyperkalemic electrocardiography changes. Insulin, usually with concomitant glucose, and albuterol are preferred to lower serum potassium levels in the acute setting; sodium polystyrene sulfonate is reserved for subacute treatment. For both disorders, it is important to consider poten- tial causes of transcellular shifts because patients are at increased risk of rebound potassium disturbances. (Am Fam Physician. 2015;92(6):487-495. Copyright © 2015 American Academy of Family Physicians.) More online otassium disorders are common. same dosage, chlorthalidone is more likely to at http://www. Hypokalemia (serum potassium induce hypokalemia than hydrochlorothia- aafp.org/afp. level less than 3.6 mEq per L [3.6 zide, which is more often implicated because CME This clinical content mmol per L]) occurs in up to 21% of its widespread use.11,12 Diuretic-induced conforms to AAFP criteria Pof hospitalized patients and 2% to 3% of hypokalemia is dose-dependent and tends to for continuing medical education (CME). See outpatients.1-3 Hyperkalemia (serum potas- be mild (3 to 3.5 mEq per L [3 to 3.5 mmol CME Quiz Questions on sium level more than 5 mEq per L [5 mmol per L]), although it can be more severe when page 441. per L] in adults, more than 5.5 mEq per L accompanied by other causes (e.g., gastroin- Author disclosure: No rel- [5.5 mmol per L] in children, and more than testinal [GI] losses).13 evant financial affiliations. 6 mEq per L [6 mmol per L] in neonates) GI LOSSES Patient information: occurs in up to 10% of hospitalized patients A handout on this topic, and approximately 1% of outpatients.4,5 The GI losses are another common cause of written by the authors of body’s plasma potassium concentration is hypokalemia, particularly among hospital- this article, is available 9 at http://www.aafp.org/ closely regulated by a variety of mechanisms. ized patients. The mechanism by which afp/2015/0915/p487-s1. upper GI losses induce hypokalemia is indi- html. Causes of Hypokalemia rect and stems from the kidney’s response to Hypokalemia results from abnormal losses, the associated alkalosis. As a portion of daily transcellular shifts, or insufficient intake potassium is excreted in the colon, lower (Table 1).6-8 Abnormal losses are most com- GI losses in the form of persistent diarrhea mon.9 Because the kidney can significantly can also result in hypokalemia and may be lower potassium excretion in response to accompanied by hyperchloremic acidosis.6 decreased intake, insufficient intake is rarely the sole cause of hypokalemia, but it often contrib- Evaluation and Management utes to hypokalemia in hospitalized patients.9 of Hypokalemia GENERAL PRINCIPLES RENAL LOSSES Hypokalemia is often asymptomatic. Evalu- Diuretic use is a common cause of renally ation begins with a search for warning signs mediated hypokalemia.10 When given in the or symptoms warranting urgent treatment SeptemberDownloaded 15, from 2015 the American◆ Volume Family 92, NumberPhysician website6 at www.aafp.org/afp.www.aafp.org/afp Copyright © 2015 American Academy of FamilyAmerican Physicians. Family For the Physician private, noncom 487- mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests. Potassium Disorders Table 1. Causes of Hypokalemia Abnormal losses Transcellular shifts Medications (continued) 7,14 (Figure 1). These include weakness or pal- Diuretics Alkalosis pitations, changes on electrocardiography Laxatives and enemas Refeeding syndrome (ECG), severe hypokalemia (less than 2.5 Corticosteroids Increased beta2 adrenergic stimulation mEq per L [2.5 mmol per L]), rapid-onset Gastrointestinal losses Delirium tremens hypokalemia, or underlying heart disease Renal losses Head injury or cirrhosis.7,15 Most cases of hypokalemia- Osmotic diuresis Myocardial ischemia induced rhythm disturbances occur in Mineralocorticoid excess Thyrotoxicosis individuals with underlying heart disease.10 Types I and II renal tubular acidosis Familial hypokalemic periodic Polydipsia Early identification of transcellular shifts is paralysis Intrinsic renal transport defects important because management may differ. Hypothermia Hypomagnesemia Identification and treatment of concurrent Inadequate intake Dialysis/plasmapheresis hypomagnesemia are also important because Anorexia Transcellular shifts magnesium depletion impedes potassium Dementia Medications repletion and can exacerbate hypokalemia- Starvation 16,17 Insulin overdose induced rhythm disturbances. Total parenteral nutrition Beta sympathomimetics 2 Pseudohypokalemia HISTORY AND PHYSICAL EXAMINATION Decongestants Delayed sample analysis Xanthines A focused history includes evaluation for Significant leukocytosis Amphotericin B 3 possible GI losses, review of medications, (> 75,000 cells per mm Verapamil intoxication 9 and assessment for underlying cardiac [75.0 × 10 per L]) Chloroquine (Aralen) intoxication comorbidities. A history of paralysis, hyper- Barium intoxication thyroidism, or use of insulin or beta agonists Cesium intoxication suggests possible transcellular shifts leading to redistributive hypokalemia. The physical NOTE: Listed in approximate order of frequency. examination should focus on identifying Information from references 6 through 8. cardiac arrhythmias and neurologic mani- festations, which range from generalized weakness to ascending paralysis. arrhythmias increases as serum potassium concentra- tion decreases, these findings are not reliable because LABORATORY ANALYSIS AND ECG some patients with severe hypokalemia do not have The diagnosis should be confirmed with a repeat serum ECG changes.20 potassium measurement. Other laboratory tests include serum glucose and magnesium levels, urine electrolyte Treatment of Hypokalemia and creatinine levels, and acid-base balance. The most The immediate goal of treatment is the prevention of accurate method for evaluating urinary potassium excre- potentially life-threatening cardiac conduction distur- tion is a 24-hour timed urine potassium collection; nor- bances and neuromuscular dysfunction by raising serum mal kidneys excrete no more than 15 to 30 mEq per L potassium to a safe level. Further replenishment can pro- (15 to 30 mmol per L) of potassium per day in response to ceed more slowly, and attention can turn to the diagnosis hypokalemia. A more practical approach is calculation of and management of the underlying disorder.15 Patients the urine potassium-to-creatinine ratio from a spot urine with a history of congestive heart failure or myocardial specimen; a ratio greater than 1.5 mEq per mmol (13 mEq infarction should maintain a serum potassium concen- per g) is indicative of renal potassium wasting.18 If no tration of at least 4 mEq per L (4 mmol per L), based on cause is identified with the initial workup, assessment of expert opinion.15 thyroid and adrenal function should be considered. Careful monitoring during treatment is essential Typically, the first ECG manifestation of hypokale- because supplemental potassium is a common cause mia is decreased T-wave amplitude. Further progression of hyperkalemia in hospitalized patients.21 The risk of can lead to ST-interval depression, T-wave inversions, rebound hyperkalemia is higher when treating redis- PR-interval prolongation, and U waves. Arrhythmias tributive hypokalemia. Because serum potassium con- associated with hypokalemia include sinus bradycar- centration drops approximately 0.3 mEq per L (0.3 dia, ventricular tachycardia or fibrillation, and torsade mmol per L) for every 100-mEq (100-mmol) reduction de pointes.19 Although the risk of ECG changes and in total body potassium, the approximate potassium 488 American Family Physician www.aafp.org/afp Volume 92, Number 6 ◆ September 15, 2015 Potassium Disorders deficit can be estimated in patients with abnormal losses Potassium should not be given in dextrose-containing and decreased intake. For example, a decline in serum solutions because dextrose-stimulated insulin secretion potassium from 3.8 to 2.9 mEq per L (3.8 to 2.9 mmol per L) can exacerbate hypokalemia. roughly corresponds to a 300-mEq (300-mmol) reduc- Nonurgent hypokalemia is treated with 40 to 100 mmol tion in total body potassium. Additional potassium will of oral potassium per day over days to weeks. For the pre- be required if losses are ongoing.
Recommended publications
  • Hypokalaemia in a Woman with Eating Disorder
    Grand Rounds Vol 11 pages 53–55 Specialities: Acute Medicine; Nephrology; Psychiatry Article Type: Case Report DOI: 10.1102/1470-5206.2011.0013 ß 2011 e-MED Ltd Hypokalaemia in a woman with eating disorder Zachary Z. Brenera, Boris Medvedovskya, James F. Winchestera and Michael Bergmanb aDivision of Nephrology, Department of Medicine, Beth Israel Medical Center, Albert Einstein School of Medicine of Yeshiva University, New York, USA; bDepartment of Medicine, Campus Golda, Rabin Medical Center, Petah-Tikva, Tel-Aviv University, Israel Corresponding address: Dr Zachary Z. Brener, 350 E. 17th St., Division of Nephrology, Beth Israel Medical Center, New York, NY 10003, USA. Email: [email protected] Date accepted for publication 13 April 2011 Abstract Chronic hypokalaemia often remains a diagnostic challenge, especially in young women without hypertension. A concealed diuretic abuse should be suspected, especially in young women with eating disorders. This case describes a woman with chronic hypokalaemia in whom a thorough medical history and proper laboratory tests were essential to early and accurate diagnosis. Keywords Hypokalaemia; eating disorders; diuretics. Introduction Chronic hypokalaemia often remains a diagnostic challenge, especially in young women without hypertension. After the exclusion of the most obvious causes, a concealed diuretic abuse associated with or without surreptitious vomiting and laxative abuse should be suspected, especially in young women concerned with their body image. A conclusive diagnosis may be difficult as such patients often vigorously deny diuretic intake[1]. Also, only a minority of patients with eating disorders (approximately 6%) abuse diuretics[2–4]. This case describes a woman with chronic hypokalaemia in whom a thorough medical history and proper laboratory tests were essential to an early and accurate diagnosis.
    [Show full text]
  • 1 Fluid and Elect. Disorders of Serum Sodium Concentration
    DISORDERS OF SERUM SODIUM CONCENTRATION Bruce M. Tune, M.D. Stanford, California Regulation of Sodium and Water Excretion Sodium: glomerular filtration, aldosterone, atrial natriuretic factors, in response to the following stimuli. 1. Reabsorption: hypovolemia, decreased cardiac output, decreased renal blood flow. 2. Excretion: hypervolemia (Also caused by adrenal insufficiency, renal tubular disease, and diuretic drugs.) Water: antidiuretic honnone (serum osmolality, effective vascular volume), renal solute excretion. 1. Antidiuresis: hyperosmolality, hypovolemia, decreased cardiac output. 2. Diuresis: hypoosmolality, hypervolemia ~ natriuresis. Physiologic changes in renal salt and water excretion are more likely to favor conservation of normal vascular volume than nonnal osmolality, and may therefore lead to abnormalities of serum sodium concentration. Most commonly, 1. Hypovolemia -7 salt and water retention. 2. Hypervolemia -7 salt and water excretion. • HYFERNATREMIA Clinical Senini:: Sodium excess: salt-poisoning, hypertonic saline enemas Primary water deficit: chronic dehydration (as in diabetes insipidus) Mechanism: Dehydration ~ renal sodium retention, even during hypernatremia Rapid correction of hypernatremia can cause brain swelling - Management: Slow correction -- without rapid administration of free water (except in nephrogenic or untreated central diabetes insipidus) HYPONA1REMIAS Isosmolar A. Factitious: hyperlipidemia (lriglyceride-plus-plasma water volume). B. Other solutes: hyperglycemia, radiocontrast agents,. mannitol.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Magnesium: the Forgotten Electrolyte—A Review on Hypomagnesemia
    medical sciences Review Magnesium: The Forgotten Electrolyte—A Review on Hypomagnesemia Faheemuddin Ahmed 1,* and Abdul Mohammed 2 1 OSF Saint Anthony Medical Center, 5666 E State St, Rockford, IL 61108, USA 2 Advocate Illinois Masonic Medical Center, 833 W Wellington Ave, Chicago, IL 60657, USA; [email protected] * Correspondence: [email protected] Received: 20 February 2019; Accepted: 2 April 2019; Published: 4 April 2019 Abstract: Magnesium is the fourth most abundant cation in the body and the second most abundant intracellular cation. It plays an important role in different organ systems at the cellular and enzymatic levels. Despite its importance, it still has not received the needed attention either in the medical literature or in clinical practice in comparison to other electrolytes like sodium, potassium, and calcium. Hypomagnesemia can lead to many clinical manifestations with some being life-threatening. The reported incidence is less likely than expected in the general population. We present a comprehensive review of different aspects of magnesium physiology and hypomagnesemia which can help clinicians in understanding, identifying, and treating this disorder. Keywords: magnesium; proton pump inhibitors; diuretics; hypomagnesemia 1. Introduction Magnesium is one of the most abundant cation in the body as well as an abundant intracellular cation. It plays an important role in molecular, biochemical, physiological, and pharmacological functions in the body. The importance of magnesium is well known, but still it is the forgotten electrolyte. The reason for it not getting the needed attention is because of rare symptomatology until levels are really low and also because of a lack of proper understanding of magnesium physiology.
    [Show full text]
  • Hyperkalemia Masked by Pseudo-Stemi Infarct Pattern and Cardiac Arrest Shareez Peerbhai1 , Luke Masha2, Adrian Dasilva-Deabreu1 and Abhijeet Dhoble1,2*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Peerbhai et al. International Journal of Emergency Medicine (2017) 10:3 International Journal of DOI 10.1186/s12245-017-0132-0 Emergency Medicine CASEREPORT Open Access Hyperkalemia masked by pseudo-stemi infarct pattern and cardiac arrest Shareez Peerbhai1 , Luke Masha2, Adrian DaSilva-DeAbreu1 and Abhijeet Dhoble1,2* Abstract Background: Hyperkalemia is a common electrolyte abnormality and has well-recognized early electrocardiographic manifestations including PR prolongation and symmetric T wave peaking. With severe increase in serum potassium, dysrhythmias and atrioventricular and bundle branch blocks can be seen on electrocardiogram. Although cardiac arrest is a worrisome consequence of untreated hyperkalemia, rarely does hyperkalemia electrocardiographically manifest as acute ischemia. Case presentation: We present a case of acute renal failure complicated by malignant hyperkalemia and eventual ventricular fibrillation cardiac arrest. Recognition of this disorder was delayed secondary to an initial ECG pattern suggesting an acute ST segment elevation myocardial infarction (STEMI). Emergent coronary angiography performed showed no evidence of coronary artery disease. Conclusions: Pseudo-STEMI patterns are rarely seen in association with acute hyperkalemia and are most commonly described with patient without acute cardiac symptomatology. This is the first such case presenting concurrently with cardiac arrest. A brief review of this rare pseudo-infarct pattern is also given. Keywords: Cardiac arrest, Hyperkalemia, Myocardial infarction, STEMI, ECG Background Case presentation Hyperkalemia that manifests with electrocardiographic A 27-year-old Caucasian male with a past medical his- findings of an ST segment elevation myocardial infarc- tory of hypertension presented to the emergency room tion (STEMI) is very rare.
    [Show full text]
  • VI.2 Elements for a Public Summary VI.2.1 Overview of Disease Epidemiology Vitamin B12 Deficiency Can Have a Number of Possible
    VI.2 Elements for a public summary VI.2.1 Overview of disease epidemiology Vitamin B12 deficiency can have a number of possible causes. Typically it occurs in people whose digestive systems do not adequately absorb the vitamin from the foods they eat. This can be caused by: Pernicious anemia, a condition in where there is a lack of a protein called intrinsic factor. The protein, which is made in the stomach, is necessary for vitamin B12 absorption. Other causes can be gastritis, surgery in which part of the stomach and/or small intestine is removed or conditions affecting the small intestine. Vitamin B12 deficiency can also occur in pregnancy and with long- term use of acid-reducing drugs. VI.2.2 Summary of treatment benefits A deficiency of vitamin B12 (cobalamin) is manifested by fatigue, weakness, mood fluctuations, memory loss, limb weakness, difficulty walking, tingling, and paralysis. Drug treatment involves the administration of vitamin B12 by injection. If the deficiency of vitamin B12 (cobalamin) depends on the underlying disease being resolved, the vitamin supplementation continues until normal levels of vitamin B12 are achieved. If the deficiency state cannot be resolved (e.g. inadequate secretion of intrinsic factor, genetic abnormalities related to the site absorption, etc.) therapy should be continued for life. VI.2.3 Unknowns relating to treatment benefits None. VI.2.4 Summary of safety concerns Risk What is known Preventability Damage to the optic nerve Optic nerve atrophy/blindness The product should be used (atrophy)/blindness in is a risk associated with with caution. patients with Leber´s disease treatment with (a disease that affects the hydroxocobalamin in patients optic nerve and often causes with Leber´s disease.
    [Show full text]
  • Mechanism of Hypokalemia in Magnesium Deficiency
    SCIENCE IN RENAL MEDICINE www.jasn.org Mechanism of Hypokalemia in Magnesium Deficiency Chou-Long Huang*† and Elizabeth Kuo* *Department of Medicine, †Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas ABSTRACT deficiency is likely associated with en- ϩ Magnesium deficiency is frequently associated with hypokalemia. Concomitant hanced renal K excretion. To support magnesium deficiency aggravates hypokalemia and renders it refractory to treat- this idea, Baehler et al.5 showed that ad- ment by potassium. Herein is reviewed literature suggesting that magnesium ministration of magnesium decreases ϩ deficiency exacerbates potassium wasting by increasing distal potassium secre- urinary K excretion and increases se- ϩ tion. A decrease in intracellular magnesium, caused by magnesium deficiency, rum K levels in a patient with Bartter releases the magnesium-mediated inhibition of ROMK channels and increases disease with combined hypomagnesemia potassium secretion. Magnesium deficiency alone, however, does not necessarily and hypokalemia. Similarly, magnesium ϩ cause hypokalemia. An increase in distal sodium delivery or elevated aldosterone replacement alone (without K ) in- ϩ levels may be required for exacerbating potassium wasting in magnesium creases serum K levels in individuals deficiency. who have hypokalemia and hypomag- nesemia and receive thiazide treatment.6 J Am Soc Nephrol 18: 2649–2652, 2007. doi: 10.1681/ASN.2007070792 Magnesium administration decreased urinary Kϩ excretion in these individuals (Dr. Charles Pak, personal communica- Hypokalemia is among the most fre- cin B, cisplatin, etc. Concomitant magne- tion, UT Southwestern Medical Center quently encountered fluid and electro- sium deficiency has long been appreci- at Dallas, July 13, 2007).
    [Show full text]
  • An Infant with Chronic Hypernatremia
    European Journal of Endocrinology (2006) 155 S141–S144 ISSN 0804-4643 An infant with chronic hypernatremia M L Marcovecchio Department of Paediatrics, University of Chieti, Via dei Vestini 5, 66100 Chieti, Italy (Correspondence should be addressed to M L Marcovecchio; Email: [email protected]) Abstract A 4-month-old boy was presented with failure to thrive, refusal to feed, delayed motor development, truncal hypotonia, and head lag. His plasma osmolality and sodium were significantly high, while his urine osmolality was inappropriately low and did not increase after desmopressin administration. Despite his hyperosmolality, he presented with a lack of thirst and became clearly polyuric and polydipsic only at the age of 2 years. Initial treatment with indomethacin was ineffective, while the combination of hydrochlorothiazide and amiloride was effective and well tolerated. European Journal of Endocrinology 155 S141–S144 Introduction (61 ml/kg) respectively. Other investigations including thyroid and adrenal function were normal. He was Chronic hypernatremia in young patients is generally refusing oral fluids despite being hypernatremic. the result of alterations in the mechanisms controlling A cranial magnetic resonance imaging scan excluded fluid balance (1). Excessive water loss, as in diabetes structural abnormalities in the hypophysis, hypo- insipidus, or an inadequate fluid intake, as in adipsic thalamus and surrounding area. There was no response hypernatremia, may be the underlying cause. The to 0.3 mg 1-desamino-8-D-arginine-vasopressin (DDAVP) differential diagnosis between these conditions is given intravenously (osmolality pre- 374 mosmol/kg; important in order to choose the appropriate treatment. post- 371 mosmol/kg). This suggested a tubular defect However, pitfalls in the diagnosis are often related to an causing nephrogenic diabetes insipidus (NDI).
    [Show full text]
  • Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside Or Colistin Therapy: a Systematic Review
    antibiotics Review Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review Martin Scoglio 1,* , Gabriel Bronz 1, Pietro O. Rinoldi 1,2, Pietro B. Faré 3,Céline Betti 1,2, Mario G. Bianchetti 1, Giacomo D. Simonetti 1,2, Viola Gennaro 1, Samuele Renzi 4, Sebastiano A. G. Lava 5 and Gregorio P. Milani 2,6,7 1 Faculty of Biomedicine, Università della Svizzera Italiana, 6900 Lugano, Switzerland; [email protected] (G.B.); [email protected] (P.O.R.); [email protected] (C.B.); [email protected] (M.G.B.); [email protected] (G.D.S.); [email protected] (V.G.) 2 Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; [email protected] 3 Department of Internal Medicine, Ospedale La Carità, Ente Ospedaliero Cantonale, 6600 Locarno, Switzerland; [email protected] 4 Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected] 5 Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1011 Lausanne, Switzerland; [email protected] 6 Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 7 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected] Citation: Scoglio, M.; Bronz, G.; Abstract: Aminoglycoside or colistin therapy may alter the renal tubular function without decreasing Rinoldi, P.O.; Faré, P.B.; Betti, C.; the glomerular filtration rate. This association has never been extensively investigated.
    [Show full text]
  • Electrolyte Disorders and Arrhythmogenesis
    Cardiology Journal 2011, Vol. 18, No. 3, pp. 233–245 Copyright © 2011 Via Medica REVIEW ARTICLE ISSN 1897–5593 Electrolyte disorders and arrhythmogenesis Nabil El-Sherif1, Gioia Turitto2 1State University of NY, Downstate Medical Center and NY Harbor VA Healthcare System, Brooklyn, NY, USA 2Methodist University Hospital, Brooklyn, NY, USA Abstract Electrolyte disorders can alter cardiac ionic currents kinetics and depending on the changes can promote proarrhythmic or antiarrhythmic effects. The present report reviews the mecha- nisms, electrophysiolgical (EP), electrocardiographic (ECG), and clinical consequences of elec- trolyte disorders. Potassium (K+) is the most abundent intracellular cation and hypokalemia is the most commont electrolyte abnormality encountered in clinical practice. The most signifcant ECG manifestation of hypokalemia is a prominent U wave. Several cardiac and + non cardiac drugs are known to suppress the HERG K channel and hence the IK, and especially in the presence of hypokalemia, can result in prolonged action potential duration and QT interval, QTU alternans, early afterdepolarizations, and torsade de pointes ventricu- lar tachyarrythmia (TdP VT). Hyperkalemia affects up to 8% of hospitalized patients mainly in the setting of compromised renal function. The ECG manifestation of hyperkalemia de- pends on serum K+ level. At 5.5–7.0 mmol/L K+, tall peaked, narrow-based T waves are seen. At > 10.0 mmol/L K+, sinus arrest, marked intraventricular conduction delay, ventricular techycardia, and ventricular fibrillation can develop. Isolated abnormalities of extracellular calcium (Ca++) produce clinically significant EP effects only when they are extreme in either direction. Hypocalcemia, frequently seen in the setting of chronic renal insufficiency, results in prolonged ST segment and QT interval while hypercalcemia, usually seen with hyperparathy- roidism, results in shortening of both intervals.
    [Show full text]
  • Medical Term Lay Term(S)
    MEDICAL TERM LAY TERM(S) ABDOMINAL Pertaining to body cavity below diaphragm which contains stomach, intestines, liver, and other organs ABSORB Take up fluids, take in ACIDOSIS Condition when blood contains more acid than normal ACUITY Clearness, keenness, esp. of vision - airways ACUTE New, recent, sudden ADENOPATHY Swollen lymph nodes (glands) ADJUVANT Helpful, assisting, aiding ADJUVANT Added treatment TREATMENT ANTIBIOTIC Drug that kills bacteria and other germs ANTIMICROBIAL Drug that kills bacteria and other germs ANTIRETROVIRAL Drug that inhibits certain viruses ADVERSE EFFECT Negative side effect ALLERGIC REACTION Rash, trouble breathing AMBULATE Walk, able to walk -ATION -ORY ANAPHYLAXIS Serious, potentially life threatening allergic reaction ANEMIA Decreased red blood cells; low red blood cell count ANESTHETIC A drug or agent used to decrease the feeling of pain or eliminate the feeling of pain by general putting you to sleep ANESTHETIC A drug or agent used to decrease the feeling of pain or by numbing an area of your body, local without putting you to sleep ANGINA Pain resulting from insufficient blood to the heart (ANGINA PECTORIS) ANOREXIA Condition in which person will not eat; lack of appetite ANTECUBITAL Area inside the elbow ANTIBODY Protein made in the body in response to foreign substance; attacks foreign substance and protects against infection ANTICONVULSANT Drug used to prevent seizures ANTILIPIDEMIC A drug that decreases the level of fat(s) in the blood ANTITUSSIVE A drug used to relieve coughing ARRHYTHMIA Any change from the normal heartbeat (abnormal heartbeat) ASPIRATION Fluid entering lungs ASSAY Lab test ASSESS To learn about ASTHMA A lung disease associated with tightening of the air passages ASYMPTOMATIC Without symptoms AXILLA Armpit BENIGN Not malignant, usually without serious consequences, but with some exceptions e.g.
    [Show full text]
  • The Serum Sodium, Potassium and Calcium Levels in Children 6- 59 Months of Age with Severe Acute Malnutrition
    ORIGINAL ARTICLE The Serum Sodium, Potassium and Calcium Levels in Children 6- 59 Months of Age with Severe Acute Malnutrition BILQUEES FATIMA1, MUHAMMAD AMIN SHEIKH2, MALIK MUHAMMAD NAEEM3 ABSTRACT Aim: To study the serum sodium, potassium and calcium levels in cases of SAM and their comparison in cases with and without diarrhea Methods: This cross sectional study was conducted in the pediatric unit II, Bahawal Victoria Hospital, Bahawalpur from January 2016 to June 2016 in children having age between 6 to 59 months admitting with a diagnosis of SAM. The patients were divided into two groups, Group A with diarrhea and group B without diarrhea. Blood was taken for serum sodium, potassium and calcium. Results: 100 patients were included. Their mean±SD age in months was 23.56±3.80. 62% were males. Serum sodium (mean±SD) was 138.46±4.14 mmol/L, potassium 3.961±0.691 mmol/L and calcium 8.359±0.61 mg/dl. 67 cases presented with (Group A) while 33 without diarrhea (Group B). The serum sodium (mean±SD) was 138.51±4.22 mmol/L in group A while 138.36± 4.05 in group B (p 0.1), the potassium 3.89±0.67 in group A while 4.1±0.72 in group B (p 0.009) and calcium (mg/dL) 8.39±0.6 in group A while 8.34 ±0.73 mg/dL in group B (0.71). There was isolated hyponatremia in 10.4% cases in group A and 9.1% in group B (p 0.83) while isolated hypokalemia in 26.9% cases in group A and 18.2% in group B (p 0.34).
    [Show full text]