Pseudo Bartter Syndrome from Surreptitious Purging Behaviour In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Familial Hyperaldosteronism
Familial hyperaldosteronism Description Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Aldosterone helps control the amount of salt retained by the kidneys. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure (hypertension), often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement. There are other forms of hyperaldosteronism that are not familial. These conditions are caused by various problems in the adrenal glands or kidneys. In some cases, a cause for the increase in aldosterone levels cannot be found. -
THE IMPORTANCE of NUTRITION AS the BEST MEDICINE for EATING DISORDERS Carolyn Coker Ross, MD, MPH
DIET AND NUTRITION THE IMPORTANCE OF NUTRITION AS THE BEST MEDICINE FOR EATING DISORDERS Carolyn Coker Ross, MD, MPH ver seven million girls and women groups. Current research demonstrates to 24, and the suicide rate was 75 times and one million boys and men that eating disorder symptoms may be as higher. will suffer from an eating disorder common or more common among certain Medical consequences of eating disor- in their lifetime. Up to 3.7% of ethnic groups (Asians, blacks, and Hispan- ders include arrested sexual maturity and O 6 females will be diagnosed with anorexia ics) when compared with whites. There growth failure in prepubertal patients. nervosa and an estimated 4.2% will have was no difference found in dieting and Many with eating disorders may look and bulimia nervosa.1 The majority of adoles- restraint scores between Asian, Latino, feel deceptively well and may have normal cent patients seen in referral centers fit and white adolescent girls and boys7 and electrograms but are still at high risk for into a third category, “eating disorder not no difference in binging or BED in obese cardiac arrhythmias and sudden death. otherwise specified” or EDNOS and do patients who sought to lose weight with Prolonged amenorrhea is associated with not fit strict criteria for either anorexia or bariatric surgery.8 These changes may be an increased risk of osteopenia and rate of bulimia.2 Nineteen percent of college- related to an extension of cultural ideals in fractures. Neuroimaging studies with com- aged females are bulimic; many go undi- these ethnic populations of what is attrac- puterized tomography (CT) have demon- agnosed until much later. -
Common Signs and Symptoms of Eating Disorders (Anorexia/Bulimia)
Common Signs and Symptoms of Eating Disorders (Anorexia/Bulimia) 1. Dramatic weight loss in a relatively short period of time. 2. Wearing big or baggy clothes or dressing in layers to hide body and/or weight loss. 3. Obsession with calories and fat content of foods. 4. Obsession with continuous exercise. 5. Frequent trips to the bathroom immediately following meals (sometimes accompanied with water running in the bathroom for a long period of time to hide the sound of vomiting). 6. Visible food restriction and self-starvation. 7. Visible bingeing and/or purging. 8. Use or hiding use of diet pills, laxatives, ipecac syrup (can cause immediate death!) or enemas. 9. Isolation. Fear of eating around and with others. 10. Hiding food in strange places (closets, cabinets, suitcases, under the bed) to avoid eating (Anorexia) or to eat at a later time (Bulimia). 11. Flushing uneaten food down the toilet (can cause sewage problems). 12. Vague or secretive eating patterns. 13. Keeping a "food diary" or lists that consists of food and/or behaviors (ie., purging, restricting, calories consumed, exercise, etc.) 14. Pre-occupation or obsession with food, weight (even if “average” weight or thin), and/or cooking. 15. Visiting websites that promote unhealthy ways to lose weight. 16. Reading books about weight loss and eating disorders. 17. Unusual food rituals: shifting the food around on the plate to look eaten; cutting food into tiny pieces; making sure the fork avoids contact with the lips (using teeth to scrap food off the fork or spoon); chewing food and spitting it out, but not swallowing; dropping food into napkin on lap to later throw away. -
Hypokalaemia in a Woman with Eating Disorder
Grand Rounds Vol 11 pages 53–55 Specialities: Acute Medicine; Nephrology; Psychiatry Article Type: Case Report DOI: 10.1102/1470-5206.2011.0013 ß 2011 e-MED Ltd Hypokalaemia in a woman with eating disorder Zachary Z. Brenera, Boris Medvedovskya, James F. Winchestera and Michael Bergmanb aDivision of Nephrology, Department of Medicine, Beth Israel Medical Center, Albert Einstein School of Medicine of Yeshiva University, New York, USA; bDepartment of Medicine, Campus Golda, Rabin Medical Center, Petah-Tikva, Tel-Aviv University, Israel Corresponding address: Dr Zachary Z. Brener, 350 E. 17th St., Division of Nephrology, Beth Israel Medical Center, New York, NY 10003, USA. Email: [email protected] Date accepted for publication 13 April 2011 Abstract Chronic hypokalaemia often remains a diagnostic challenge, especially in young women without hypertension. A concealed diuretic abuse should be suspected, especially in young women with eating disorders. This case describes a woman with chronic hypokalaemia in whom a thorough medical history and proper laboratory tests were essential to early and accurate diagnosis. Keywords Hypokalaemia; eating disorders; diuretics. Introduction Chronic hypokalaemia often remains a diagnostic challenge, especially in young women without hypertension. After the exclusion of the most obvious causes, a concealed diuretic abuse associated with or without surreptitious vomiting and laxative abuse should be suspected, especially in young women concerned with their body image. A conclusive diagnosis may be difficult as such patients often vigorously deny diuretic intake[1]. Also, only a minority of patients with eating disorders (approximately 6%) abuse diuretics[2–4]. This case describes a woman with chronic hypokalaemia in whom a thorough medical history and proper laboratory tests were essential to an early and accurate diagnosis. -
Section 15: Treatment of Eating Disorders
Formulary and Prescribing Guidelines SECTION 15: TREATMENT OF EATING DISORDERS Section 15. Treatment of eating disorders 15.1 Introduction Please review the Trust document “Guidelines for the assessment and treatment of eating disorders” in the CAMHS Operational Policy. When screening for eating disorders one or two simple questions should be considered for use with specific target groups 1. Do you think you have an eating problem? 2. Do you worry excessively about your weight?’ Early detection may be helped by five screening questions using The SCOFF questionnaire. A score of two or more positive answers should raise clinical suspicion and lead to an in depth diagnostic evaluation. 1. Do you ever make yourself Sick because you feel uncomfortably full? 2. Do you worry you have lost Control over how much you eat? 3. Have you recently lost more than One stone in a three month period? 4. Do you believe yourself to be Fat when others say you are too thin? 5. Would you say that Food dominates your life? It is important to take into account that clients with eating disorders can develop Acute Kidney Injury through a variety of mechanisms associated with each condition. Clinicians should be vigilant in the monitoring of physical health especially serum creatinine and levels of hydration.3 15.2 Anorexia nervosa The following would represent a reasonable initial screen for Anorexia Nervosa in primary care if there are no other indications or diagnostic concerns: Full Blood Count, ESR, Urea and Electrolytes, Creatinine, Liver Function Tests, Random Blood Glucose, Urinalysis, ECG (should be considered in all cases and essential if symptoms/signs of compromised cardiac function, bradycardia, electrolyte abnormality and/or BMI less than 15 kg/m2 or equivalent on centile chart). -
Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm
Kidney360 Publish Ahead of Print, published on July 23, 2020 as doi:10.34067/KID.0000922020 Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm Michael R Lattanzio(1), Matthew R Weir(2) (1) Division of Nephrology, Department of Medicine, The Chester County Hospital/University of Pennsylvania Health System (2) Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Correspondence: Matthew R Weir University of Maryland Medical Center Division of Nephrology 22 S. Greene St. Room N3W143 Baltimore, Maryland 21201 [email protected] 1 Copyright 2020 by American Society of Nephrology. Abbreviations PA=Primary Hyperaldosteronism CVD=Cardiovascular Disease PAPY=Primary Aldosteronism Prevalence in Hypertension APA=Aldosterone-Producing Adenoma BAH=Bilateral Adrenal Hyperplasia ARR=Aldosterone Renin Ratio AF=Atrial Fibrillation OSA=Obstructive Sleep Apnea OR=Odds Ratio AHI=Apnea Hypopnea Index ABP=Ambulatory Blood Pressure AVS=Adrenal Vein Sampling CT=Computerized Tomography MRI=Magnetic Resonance Imaging SIT=Sodium Infusion Test FST=Fludrocortisone Suppression Test CCT=Captopril Challenge Test PAC=Plasma Aldosterone Concentration PRA=Plasma Renin Activity MRA=Mineralocorticoid Receptor Antagonist MR=Mineralocorticoid Receptor 2 Abstract Nearly seven decades have elapsed since the clinical and biochemical features of Primary Hyperaldosteronism (PA) were described by Conn. PA is now widely recognized as the most common form of secondary hypertension. PA has a strong correlation with cardiovascular disease and failure to recognize and/or properly diagnose this condition has profound health consequences. With proper identification and management, PA has the potential to be surgically cured in a proportion of affected individuals. The diagnostic pursuit for PA is not a simplistic endeavor, particularly since an enhanced understanding of the disease process is continually redefining the diagnostic and treatment algorithm. -
Anorexia/Cachexia Heart Failure Symptom Management Guideline for Adults, Age 19 and Older in British Columbia
Anorexia/Cachexia Heart Failure Symptom Management Guideline For adults, age 19 and older in British Columbia What is anorexia? Anorexia is a syndrome characterized by some or all of the following symptoms: loss of appetite, nausea, early satiety, weakness, fatigue, food aversion, and significant physical and/or psychological symptoms. Causes of anorexia are multifactorial and include fatigue, dyspnea, medication side-effects, nausea, depression, anxiety and sodium restricted diets, which may all be found in patients with heart failure. What is cachexia? Cachexia is a syndrome characterized by severe body weight, fat and muscle loss and increased protein catabolism due to underlying disease. The prevalence of cachexia is 16–42% in the heart failure population and is associated with a 50%, 18 month mortality risk independent of variables such as ejection fraction, age and functional ability. How is cachexia diagnosed? Chronic condition with >5% weight loss in <12 months; or body mass index (BMI) <20kg/m2; and 3 out of 5 additional criteria: 1) Fatigue, 2) Decreased muscle strength, 3) Anorexia, 4) Low muscle mass, 5) Abnormal biochemistry *Blood testing to diagnose cachexia in advanced stages of disease is not advocated. Reminder: Malnutrition also affects prognosis in patients with heart failure and is often found in early transitions of the disease. However this symptom management guideline will focus on the assessment and treatment of anorexia and cachexia. Approach to Managing Anorexia/Cachexia Assessment History: When did weight loss begin? How much weight was lost? Obtain baseline (dry) weight. How is [the patients] appetite? What do they eat or drink on a typical day? How has weight loss affected mood? Ask about: nausea, early satiety, dyspnea, poor oral hygiene, dysphagia, malabsorption, bowel habits. -
High and Non-Suppressible Plasma Renin Activity in a Patient with Aldosterone Producing Adenoma: Pathophysiologic and Diagnostic Implications
Journal of Human Hypertension (1999) 13, 75–78 1999 Stockton Press. All rights reserved 0950-9240/99 $12.00 http://www.stockton-press.co.uk/jhh CASE REPORT High and non-suppressible plasma renin activity in a patient with aldosterone producing adenoma: pathophysiologic and diagnostic implications E Shyong Tai and PHK Eng Department of Endocrinology, Singapore General Hospital, Singapore We describe a case of primary aldosteronism due to an possible pathophysiological causes of a rise in PRA in aldosterone producing adenoma with high and non-sup- this clinical setting and suggest that underlying arteri- pressible plasma renin activity (PRA). She had sup- olar disease due to prolonged hypertension may be the pressed PRA at initial diagnosis. This rose above the cause of increased and non-suppressible PRA in pri- reference range for normal individuals over a period of mary aldosteronism. 7 years with untreated hypertension. We discuss the Keywords: primary aldosteronism; plasma renin activity; diagnosis Introduction Case report Primary aldosteronism is classically associated with Our patient was a 34-year-old woman who was hypertension, hypokalaemia and suppressed plasma found to have hypertension during the fifteenth renin activity (PRA). Most cases are due to an aldo- week of pregnancy. Plasma aldosterone was sterone producing adenoma (APA). We present a 2039 pmol/l, PRA Ͻ0.15 g/l/h and a diagnosis of case of prolonged, untreated, primary aldosteronism primary aldosteronism was made. Following the due to an APA. She had suppressed PRA at the time delivery of her child, she defaulted follow-up and of diagnosis, which became elevated and non-sup- was not treated with any antihypertensives nor pot- pressible by intravenous salt loading. -
A Case of Gitelman's Syndrome with Decreased Angiotensin II–Forming Activity
545 Hypertens Res Vol.29 (2006) No.7 p.545-549 Case Report A Case of Gitelman’s Syndrome with Decreased Angiotensin II–Forming Activity Kimika ETO1), Uran ONAKA1), Takuya TSUCHIHASHI1), Takashi HIRANO2), Masaru NAKAYAMA2), Kosuke MASUTANI3), Hideki HIRAKATA3), Hidenori URATA4), and Minoru YASUJIMA5) Gitelman’s syndrome (GS) is a variant of Bartter’s syndrome (BS) characterized by hypokalemic alkalosis, hypomagnesemia, hypocalciuria and secondary aldosteronism without hypertension. A 31-year old Japa- nese man who had suffered from mild hypokalemia for 10 years was admitted to our hospital. He had met- abolic alkalosis, hypokalemia and hypocalciuria. Since he had two missense mutations (R261C and L623P) in the thiazide-sensitive Na-Cl cotransporter (TSC) gene (SLC12A3), he was diagnosed as having GS. He showed hyperreninism and a high angiotensin I (Ang I) level, whereas his angiotensin II (Ang II) and aldo- sterone levels were not elevated. His angiotensin converting enzyme (ACE) activities were normal, and administration of captopril inhibited the production of Ang II and aldosterone. We evaluated the Ang II–form- ing activity (AIIFA) of other enzymes in his lymphocytes. Interestingly, chymase-dependent AIIFA was not detected in the lymphocytes. Together, these results suggest that the lack of chymase activity resulted in the manifestation of GS without hyperaldosteronism. (Hypertens Res 2006; 29: 545–549) Key Words: Gitelman’s syndrome, angiotensin II, aldosterone, chymase several TSC gene mutations have been reported (5–10). Introduction Moreover, GS is characterized by sodium wasting, low blood pressure, and secondary hyperaldosteronism. Here, we report In 1966, Gitelman et al. reported three adult patients with a case of GS with hyperreninism and high angiotensin I (Ang intermittent episodes of muscle weakness and tetany, I) but without elevated angiotensin II (Ang II) or hyperaldos- hypokalemia, and hypomagnesemia, but no history of poly- teronism. -
Magnesium: the Forgotten Electrolyte—A Review on Hypomagnesemia
medical sciences Review Magnesium: The Forgotten Electrolyte—A Review on Hypomagnesemia Faheemuddin Ahmed 1,* and Abdul Mohammed 2 1 OSF Saint Anthony Medical Center, 5666 E State St, Rockford, IL 61108, USA 2 Advocate Illinois Masonic Medical Center, 833 W Wellington Ave, Chicago, IL 60657, USA; [email protected] * Correspondence: [email protected] Received: 20 February 2019; Accepted: 2 April 2019; Published: 4 April 2019 Abstract: Magnesium is the fourth most abundant cation in the body and the second most abundant intracellular cation. It plays an important role in different organ systems at the cellular and enzymatic levels. Despite its importance, it still has not received the needed attention either in the medical literature or in clinical practice in comparison to other electrolytes like sodium, potassium, and calcium. Hypomagnesemia can lead to many clinical manifestations with some being life-threatening. The reported incidence is less likely than expected in the general population. We present a comprehensive review of different aspects of magnesium physiology and hypomagnesemia which can help clinicians in understanding, identifying, and treating this disorder. Keywords: magnesium; proton pump inhibitors; diuretics; hypomagnesemia 1. Introduction Magnesium is one of the most abundant cation in the body as well as an abundant intracellular cation. It plays an important role in molecular, biochemical, physiological, and pharmacological functions in the body. The importance of magnesium is well known, but still it is the forgotten electrolyte. The reason for it not getting the needed attention is because of rare symptomatology until levels are really low and also because of a lack of proper understanding of magnesium physiology. -
VI.2 Elements for a Public Summary VI.2.1 Overview of Disease Epidemiology Vitamin B12 Deficiency Can Have a Number of Possible
VI.2 Elements for a public summary VI.2.1 Overview of disease epidemiology Vitamin B12 deficiency can have a number of possible causes. Typically it occurs in people whose digestive systems do not adequately absorb the vitamin from the foods they eat. This can be caused by: Pernicious anemia, a condition in where there is a lack of a protein called intrinsic factor. The protein, which is made in the stomach, is necessary for vitamin B12 absorption. Other causes can be gastritis, surgery in which part of the stomach and/or small intestine is removed or conditions affecting the small intestine. Vitamin B12 deficiency can also occur in pregnancy and with long- term use of acid-reducing drugs. VI.2.2 Summary of treatment benefits A deficiency of vitamin B12 (cobalamin) is manifested by fatigue, weakness, mood fluctuations, memory loss, limb weakness, difficulty walking, tingling, and paralysis. Drug treatment involves the administration of vitamin B12 by injection. If the deficiency of vitamin B12 (cobalamin) depends on the underlying disease being resolved, the vitamin supplementation continues until normal levels of vitamin B12 are achieved. If the deficiency state cannot be resolved (e.g. inadequate secretion of intrinsic factor, genetic abnormalities related to the site absorption, etc.) therapy should be continued for life. VI.2.3 Unknowns relating to treatment benefits None. VI.2.4 Summary of safety concerns Risk What is known Preventability Damage to the optic nerve Optic nerve atrophy/blindness The product should be used (atrophy)/blindness in is a risk associated with with caution. patients with Leber´s disease treatment with (a disease that affects the hydroxocobalamin in patients optic nerve and often causes with Leber´s disease. -
Dsm-5 Diagnostic Criteria for Eating Disorders Anorexia Nervosa
DSM-5 DIAGNOSTIC CRITERIA FOR EATING DISORDERS ANOREXIA NERVOSA DIAGNOSTIC CRITERIA To be diagnosed with anorexia nervosa according to the DSM-5, the following criteria must be met: 1. Restriction of energy intaKe relative to requirements leading to a significantly low body weight in the context of age, sex, developmental trajectory, and physical health. 2. Intense fear of gaining weight or becoming fat, even though underweight. 3. Disturbance in the way in which one's body weight or shape is experienced, undue influence of body weight or shape on self-evaluation, or denial of the seriousness of the current low body weight. Even if all the DSM-5 criteria for anorexia are not met, a serious eating disorder can still be present. Atypical anorexia includes those individuals who meet the criteria for anorexia but who are not underweight despite significant weight loss. Research studies have not found a difference in the medical and psychological impacts of anorexia and atypical anorexia. BULIMIA NERVOSA DIAGNOSTIC CRITERIA According to the DSM-5, the official diagnostic criteria for bulimia nervosa are: • Recurrent episodes of binge eating. An episode of binge eating is characterized by both of the following: o Eating, in a discrete period of time (e.g. within any 2-hour period), an amount of food that is definitely larger than most people would eat during a similar period of time and under similar circumstances. o A sense of lacK of control over eating during the episode (e.g. a feeling that one cannot stop eating or control what or how much one is eating).