Characteristics and Health Risk Assessment of PM2.5-Bound Pahs During Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics and Health Risk Assessment of PM2.5-Bound Pahs During Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China atmosphere Article Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China Mei Luo 1,2,4,†, Yuanyuan Ji 2,3,†, Yanqin Ren 1, Fuhong Gao 3, Hao Zhang 1, Lihui Zhang 1, Yanqing Yu 1 and Hong Li 2,* 1 Department of Urban Construction, Beijing City University, Beijing 100083, China; [email protected] (M.L.); [email protected] (Y.R.); [email protected] (H.Z.); [email protected] (L.Z.); [email protected] (Y.Y.) 2 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; [email protected] 3 College of Earth Sciences, Jilin University, Changchun 130061, China; [email protected] 4 Beijing Municipal Research Institute of Environmental Protection, National Engineering Research Center of Urban Environmental Pollution Control, Beijing 100037, China * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: PM2.5 level has decreased significantly in Beijing in recent years due to the strict air quality control measures taken in Jingjinji Region and the surrounding areas. However, the variation characteristics of the concentrations of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing in recent years are still not so clear. In order to understand the pollution status of PM2.5- Citation: Luo, M.; Ji, Y.; Ren, Y.; Gao, bound PAHs in Beijing, fifteen PAHs were measured in a typical urban area of Beijing from 1 March F.; Zhang, H.; Zhang, L.; Yu, Y.; Li, H. to 20 March 2018. The average mass concentration of the 15 PAHs was 21 ng/m3 and higher in Characteristics and Health Risk the nighttime than that in the daytime. The proportion of 4-ring PAHs in 15 PAHs was highest Assessment of PM2.5-Bound PAHs (43%), while 6-ring PAHs was lowest (10%). The levels of PAHs were higher during heavy pollution during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, episodes than those in non-heavy pollution episodes, and the proportions of 5- and 6-ring PAHs were China. Atmosphere 2021, 12, 323. increased during a heavy pollution episode. PAHs posed obvious carcinogenic risks to the exposed https://doi.org/10.3390/ populations, and the risk was higher during heavy pollution episodes than the average value of atmos12030323 the whole monitoring period. The main sources of PAHs were traffic emissions and coal/biomass burning. Air masses from the south-southeast had a great influence on the PM2.5 levels during a Academic Editor: Evangelos Tolis heavy pollution episode. It is recommended that not only the PM2.5 levels but also the PAHs levels bounded in PM2.5 should be controlled to protect human health in Beijing. Received: 17 December 2020 Accepted: 22 February 2021 Keywords: PM2.5-bound PAHs; pollution characteristics; health risk assessment; sources; Beijing Published: 1 March 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- iations. Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds com- posed of two or more fused benzene rings and widely found in air, soil, and water [1–3]. They also are teratogenic, mutagenic, and persistent organic pollutants which can be bio- enriched and transported over long distances and cause great harm to human health [4,5]. According to the International Agency for Research on Cancer (IARC), some PAHs (like Copyright: © 2021 by the authors. benzo(a)pyrene) are carcinogenic to humans. Both natural sources (like geological dust and Licensee MDPI, Basel, Switzerland. forest fire) and anthropogenic sources could release PAHs into the environment. Anthro- This article is an open access article distributed under the terms and pogenic sources include industrial-related sources, traffic-related sources, and domestic- conditions of the Creative Commons related sources [2,6]. PAHs in ambient air exist in the gas phase and particulate phase. Attribution (CC BY) license (https:// PAHs with 2–3 aromatic rings are mainly gaseous, and harmful PAHs with 4 or more creativecommons.org/licenses/by/ aromatic rings are mainly particulate (especially PM2.5)[6,7]. PM2.5, with a small particle 4.0/). size, can penetrate into bronchioles and alveoli of the human body and can migrate a long Atmosphere 2021, 12, 323. https://doi.org/10.3390/atmos12030323 https://www.mdpi.com/journal/atmosphere Atmosphere 2021, 12, 323 2 of 19 distance in the atmosphere. Therefore, the harm of PM2.5-bound PAHs to human health cannot be ignored. In addition, due to global distillation and grasshopper effects, PAHs can gradually migrate to the polar regions of the earth, thus causing global pollution [6,8]. Therefore, sources and environmental fate of PM2.5-bound PAHs have become a research focus in the field of environmental science [9]. Studies on the pollution characteristics and health risk assessments of PAHs in urban and rural areas have been carried on since the 1980s and 1990s internationally [10–12]. The distribution of PAHs in gas and aerosol phases has been analyzed [13,14], and qualitative and quantitative methods for source analysis have also been established [15,16]. In the past twenty years, researchers have conducted studies on the concentrations, composition characteristics, sources, and human health risks of PAHs in PM2.5 in Beijing [1,17–22]. The results showed that the concentration of PM2.5-bound PAHs in Beijing was high and had obvious seasonal variation characteristics, which was usually highest in winter, followed by autumn, spring and summer. In addition, the concentration of PM2.5-bound PAHs was significantly higher during the heating period than that in the non-heating period [2,5,17]. The PM2.5-bound PAHs in Beijing were mainly 3–6 ring PAHs. Wang et al. [1] found that PAHs with more than 4 rings accounted for 79% of the PM2.5 in Beijing. Duan et al. [5] found that PAHs with more than 4 rings accounted for 96% of the PM2.5 during the heating period in Beijing. The human health risk of PAHs in PM2.5 in Beijing cannot be ignored. Wang et al. [23] found that the incremental lifetime cancer risk (ILCR) of adults and children exposed to PAHs exceeded the acceptable risk for humans, and the ILCR of adults was higher than that of children. Source apportionment results showed that PM2.5-bound PAHs in Beijing mainly came from vehicle exhaust emissions, coal combustion, and biomass burning such as plant burning, among which, the concentration of PAHs in the heating period was greatly affected by coal combustion [2,18,23]. With the development of society and economy and the acceleration of urbanization, regional heavy air pollution with PM2.5 as the primary pollutant occurred frequently in autumn and winter in the early 2010s, especially in the Beijing–Tianjin–Hebei region and its surrounding areas. In order to improve the ambient air quality, the Air Pollution Prevention and Control Action Plan was issued in 2013 in China, which clearly required 3 Beijing to control its annual mean concentration of PM2.5 at around 60 µg/m in 2017. The Beijing–Tianjin–Hebei and Surrounding Area Air Pollution Prevention and Control Work Plan in 2017 [24] identified the Beijing–Tianjin–Hebei air pollution transport channel (“2 + 26” cities). The plan focuses on improving regional ambient air quality and implements joint regional air pollution prevention and control. The Beijing Municipal Environmental Status Bulletin [25] showed that the annual mean concentration of PM2.5 in Beijing in 2018 was 51 µg/m3, 46% higher than the national standard value. The number of days with heavy pollution and severe pollution was 15, with an incidence of 4.1%, which was 43 days less than that of 2013. The target in the Air Pollution Prevention and Control Action Plan was successfully achieved. With the continuous strengthening of the prevention and control of air pollution in Beijing, the concentration of PM2.5 in Beijing has shown a downward trend [23,26]. However, heavy air pollution episode with PM2.5 as the primary pollutant still occurs in Beijing in autumn and winter. Studies have shown that atmospheric particulates, such as PM2.5, in urban areas of China often contain relatively high concentrations of PAHs [27] when heavy air pollution occurs. In order to understand the pollution status of PAHs in PM2.5 during heavy air pollution episodes when the concentration of PM2.5 is generally decreasing in Beijing, a 20-day continuous monitoring of PM2.5 was carried out in an urban area of Beijing in March 2018. The concentration, composition, and variation characteristics of PM2.5-bound PAHs during the heavy air pollution episodes were analyzed. The human health risk of toxic PAHs was assessed, and the sources of PAHs were identified. Based on the backward trajectory analysis, the impact of long-distance air mass transport on PM2.5 was analyzed. The results can provide a scientific basis for accurately understanding the pollution characteristics of PM2.5-bound PAHs during heavy air pollution episodes in Atmosphere 2021, 12, x FOR PEER REVIEW 3 of 19 Atmosphere 2021, 12, 323 3 of 19 transport on PM2.5 was analyzed. The results can provide a scientific basis for accurately understanding the pollution characteristics of PM2.5-bound PAHs during heavy air pol- lution episodes in Beijing, correctly evaluating the impact of PM2.5 on human health and Beijing, correctly evaluating the impact of PM2.5 on human health and developing effective 2.5 PMdeveloping2.5 prevention effective and PM control prevention measures. and control measures. 2.2. Materials Materials and and Methods Methods 2.1.2.1.
Recommended publications
  • Chapter 7.2. Pollution Status of Persistent
    LARGE MARINE ECOSYSTEMS: STATUS AND TRENDS Chapter 7.2. Polluton status of persistent organic pollutants Lead Author +LGHVKLJH7DNDGD /DERUDWRU\RI2UJDQLF*HRFKHPLVWU\7RN\R8QLYHUVLW\RI$JULFXOWXUHDQG7HFKQRORJ\ Contributng Author 5HL<DPDVKLWD /DERUDWRU\RI2UJDQLF*HRFKHPLVWU\7RN\R8QLYHUVLW\RI$JULFXOWXUHDQG7HFKQRORJ\ Chapter Citaton 7DNDGD+<DPDVKLWD5 &KDSWHU3ROOXWLRQVWDWXVRISHUVLVWHQWRUJDQLFSROOXWDQWV,Q,2& 81(6&2DQG81(3 Large Marine Ecosystems: Status and Trends8QLWHG1DWLRQV(QYLURQPHQW 3URJUDPPH1DLURELSS 164 POLLUTION AND ECOSYSTEM HEALTH 7.2 Pollution status of persistent organic pollutants SuMMary Persistent organic pollutants (POPs) are man-made chemicals used in industrial and agricultural applicatons; they are widely distributed throughout marine ecosystems. They accumulate in living tssues, become more concentrated through the food chain, and are toxic. POPs pose a health risk to marine biota at higher trophic levels and to human consumers of some sea foods, and have been regulated through the Stockholm Conventon on Persistent Organic Pollutants since 2004. Understanding the status, trends, and distributon of POPs in LMEs, and identfying pollutant sources, are important for assessing and maintaining marine ecosystem health, as well as for evaluatng the efectveness of regulaton. This assessment used plastc resin pellets as passive samplers of POPs in LMEs. The pellets, which are used in the manufacturing of plastc products, are found washed up on beaches all over the world. The pellets sorb and concentrate POPs from the surrounding seawater. Pellets from 193 locatons in 37 LMEs were collected by volunteers through the Internatonal Pellet Watch (IPW) programme between 2005 and 2014 and sent to laboratories to be analysed for three classes of POPs: PCBs (polychlorinated biphenyls), DDTs (dichlorodiphenyltrichloroethane and related chemicals), and HCHs (hexachlorocyclohexane isomers).
    [Show full text]
  • The Foundation for Global Action on Persistent Organic Pollutants: a United States Perspective
    The Foundation for Global Action on Persistent Organic Pollutants: A United States Perspective Office of Research and Development Washington, DC 20460 EPA/600/P-01/003F NCEA-I-1200 March 2002 www.epa.gov Disclaimer Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Cover page credits: Bald eagle, U.S. FWS; mink, Joe McDonald/Corbis.com; child, family photo, Jesse Paul Nagaruk; polar bear, U.S. FWS; killer whales, Craig Matkin. Contents Contributors ................................................................................................. vii Executive Summary ....................................................................................... ix Chapter 1. Genesis of the Global Persistent Organic Pollutant Treaty ............ 1-1 Why Focus on POPs? ................................................................................................. 1-2 The Four POPs Parameters: Persistence, Bioaccumulation, Toxicity, Long-Range Environmental Transport ......................................................... 1-5 Persistence ......................................................................................................... 1-5 Bioaccumulation ................................................................................................. 1-6 Toxicity .............................................................................................................. 1-7 Long-Range Environmental Transport .................................................................. 1-7 POPs
    [Show full text]
  • Addressing Persistent Organic Pollutants
    Minnesota Journal of Law & Inequality Volume 30 Issue 1 Article 3 June 2012 Arctic Justice: Addressing Persistent Organic Pollutants Elizabeth Burleson Stephanie Dodson Dougherty Follow this and additional works at: https://lawandinequality.org/ Recommended Citation Elizabeth Burleson & Stephanie Dodson Dougherty, Arctic Justice: Addressing Persistent Organic Pollutants, 30(1) LAW & INEQ. 57 (2012). Available at: https://scholarship.law.umn.edu/lawineq/vol30/iss1/3 Minnesota Journal of Law & Inequality is published by the University of Minnesota Libraries Publishing. 57 Arctic Justice: Addressing Persistent Organic Pollutants Elizabeth Burlesont & Stephanie Dodson Doughertytt Introduction Persistent Organic Pollutants (POPs), anthropogenic chemicals produced for or by agricultural and industrial uses, contaminate all regions of the world.! There are three general categories of POPs: pesticides (including insecticides, herbicides, and fungicides), industrial chemicals, and unintentionally produced byproducts of certain chemical and combustion processes.2 The pesticide dichlorodiphenyltrichloroethane (DDT) is perhaps the most well known of the POPs.' It was heavily relied upon during World War II to control the spread of certain diseases and is still used to control malaria in several developing nations.' Another POP is a class of chemicals collectively known as polychlorinated biphenyls (PCBs), which are widely used as dielectric fluid in transformers and capacitors. Dioxins are an example of unintentionally produced POPs.' These are chemicals released by incomplete combustion or by the manufacture of certain pesticides.' Although these chemicals are produced for beneficial purposes (or as a byproduct), it has become apparent t. Professor Elizabeth Burleson has an LL.M. from the London School of Economics and Political Science and a J.D. from the University of Connecticut School of Law.
    [Show full text]
  • Assessment of Global Megatrends — an Update
    Assessment of global megatrends — an update Global megatrend 10: Increasing environmental pollution Cover design: EEA Layout: EEA/Pia Schmidt Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Union. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. Copyright notice © European Environment Agency, 2014 Reproduction is authorised, provided the source is acknowledged, save where otherwise stated. The present chapter was authored by Tobias Lung with contributions from John van Aardenne, Michael Asquith, Thomas Henrichs, Frank Wugt Larsen, Anke Lükewille, Anita Pirc Velkavrh and Teresa Ribeiro. European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Assessment of global megatrends — an update Global megatrend 10: Increasing environmental pollution Assessment of global megatrends — an update Europe is bound to the rest of the world through its five-yearly flagship report on the European an enormous number of systems — environmental, environment's state and outlook (SOER 2010). economic, social, political and others. Such The exploratory analysis summarised 11 global networks enable complex flows of materials megatrends grouped into five clusters — social, and ideas across the globe, producing uncertain technological, economic, environmental and feedbacks and knock-on effects over time. governance. Introducing the issues succinctly, it Greenhouse gas emissions in Europe today can sought to trigger a discussion about how Europe affect the climate in distant locations and far into should monitor and assess future changes in order the future.
    [Show full text]
  • Persistent Lipophilic Contaminants and Other Chemical Residues in The
    1 PERSISTENT LIPOPHILIC CONTAMINANTS AND OTHER CHEMICAL RESIDUES IN THE SOUTHERN HEMISPHERE Des W. Connell1,Gregory J.Miller2, Munro R.Mortimer2, Glen R. Shaw2 and Shelly M. Anderson2 1 Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong on leave from the Faculty of Environmental Sciences, Griffith University, Nathan, Qld 4111, Australia. 2 Envirotest, Mt. Gravatt Research Park, Nathan Qld4111, Australia Abstract: Data on the levels of persistent lipophilic contaminants and other chemicals has been reviewed and the dominant persistent lipophilic contaminants in the Southern Hemisphere found to be the chlorohydrocarbons commonly described as the DDTs, HCH’s and the PCBs. The distribution patterns suggest that long range transport, probably by global distillation, occurred with these substances. Endosulfan residues appear significant in areas of usage but the data is limited. The data is in accord with a reduction in usage of chlorohydrocarbons in developed countries but an increase in usage in many tropical countries. A systematic comparison of data on the Northern and Southern Hemispheres indicates that the Northern Hemisphere is generally more contaminated than the Southern Hemisphere. It also suggests that the process of equilibration between the two hemispheres is relatively slow. In addition with the HCB’s there is an equatorial to polar gradation in concentration probably as a result of global distillation. With the HCH’s relatively high 2 concentrations exist in the tropics probably due to their heavy usage in these regions. With the HCB’s, DDTs and PCBs the concentrations appear to be more localised in relation to the sources since these substances are less volatile than the compounds mentioned previously.
    [Show full text]
  • Summary of External Peer Review and Public Comments and Disposition for Cyclic Aliphatic Bromide Cluster (HBCD)
    Office of Chemical Safety and United States Pollution Prevention Environmental Protection Agency September 2020 Summary of External Peer Review and Public Comments and Disposition for Cyclic Aliphatic Bromide Cluster (HBCD) Response to Support Risk Evaluation of Cyclic Aliphatic Bromide Cluster (HBCD) September 2020 Table of Contents ABBREVIATIONS ....................................................................................................................... 4 Content and Organization ............................................................................................................... 8 Systematic Review – Public and Peer Review Comments ........................................................... 16 Environmental Fate and Transport................................................................................................ 30 Environmental Release ................................................................................................................. 46 Occupational Exposure ................................................................................................................. 55 Environmental, General Population, and Consumer Exposure .................................................... 75 Environmental Hazard .................................................................................................................. 96 Human Health Hazard................................................................................................................. 108 Environmental Risk Characterization
    [Show full text]
  • Persistent Organic Pollutants
    PERSISTENT ORGANIC POLLUTANTS An Assessment Report on: DDT-Aldrin-Dieldrin-Endrin-Chlordane Heptachlor-Hexachlorobenzene Mirex-Toxaphene Polychlorinated Biphenyls Dioxins and Furans Prepared by: L. Ritter, K.R. Solomon, J. Forget Canadian Network of Toxicology Centres 620 Gordon Street Guelph ON Canada and M. Stemeroff and C.O'Leary Deloitte and Touche Consulting Group 98 Macdonell St., Guelph ON Canada For: The International Programme on Chemical Safety (IPCS) within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC) This report is produced for the International Programme on Chemical Safety (IPCS). The work is carried out within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC). The report does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of human resources in the field of chemical safety. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, strengthening capabilities for prevention of an response to chemical accidents and their follow-up, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals.
    [Show full text]
  • Pathways of Organic Chemical Contamination in Ecosystems - Padma T
    ENVIRONMENTAL AND ECOLOGICAL CHEMISTRY – Vol. III – Pathways of Organic Chemical Contamination in Ecosystems - Padma T. Venkatraman PATHWAYS OF ORGANIC CHEMICAL CONTAMINATION IN ECOSYSTEMS Padma T. Venkatraman College of William and Mary, USA Keywords: Persistent Organic Pollutants, Global transport, Enantiomer ratios, Stable isotopes. Contents 1. Introduction 2. Sources and Input of Organic Pollutants to the Environment 2.1. Diffusive versus Point Sources 2.2. Important Classes of Organic Pollutants 2.3. Degradable versus Persistent Pollutants 2.4. Pollutants of Emerging Concern 2.5. Compounds and Mixtures 3. Transport pathways within ecosystems 3.1. Effect of Chemical Properties 3.2. Environmental Factors Affecting Transport 4. Degradation pathways 4.1. Photodegradation 4.2. Hydrolysis 4.3. Biodegradation 5. Spatial scales of pollutant transport pathways 5.1. Local Transport 5.2. Regional Transport 5.3. National Scale 5.4. Continental Scale 5.5. Global Transport 5.5.1. Evidence in Support of Global Distillation 5.5.2. Cold Condensation and Accumulation 5.5.3 Significance of Global Transport 6. Use of geochemicalUNESCO tracers to track contaminant – EOLSS pathways through ecosystems 6.1. Isomer Ratios 6.1.1. Measurement of Isomer Ratios 6.1.2. UseSAMPLE of Isomer Ratios to Study ContaminantCHAPTERS Pathways 6.2. Enantiomer Ratios 6.2.1. Measurement of Enantiomer Ratios 6.2.2. Use of Enantiomer Ratios to Study Contaminant Pathways 6.3. Stable Isotope Ratios 6.3.1. Measurement of Stable Isotope Ratios 6.3.2. Use of Elemental Stable Isotope Ratios to Study Contaminant Pathways 6.3.3. Use of Compound Specific Stable Isotope Ratios (CSIRs) to Study Contaminant Pathways 7.
    [Show full text]
  • The Influence of Ecological Processes on the Accumulation of Persistent Organochlorines in Aquatic Ecosystems
    master The influence of ecological processes on the accumulation of persistent organochlorines in aquatic ecosystems Olof Berglund DISTRIBUTION OF THIS DOCUMENT IS IKLOTED FORBGN SALES PROHIBITED eX - Department of Ecology Chemical Ecology and Ecotoxicology Lund University, Sweden Lund 1999 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. The influence of ecologicalprocesses on the accumulation of persistent organochlorinesin aquatic ecosystems Olof Berglund Akademisk avhandling, som for avlaggande av filosofie doktorsexamen vid matematisk-naturvetenskapliga fakulteten vid Lunds Universitet, kommer att offentligen forsvaras i Bla Hallen, Ekologihuset, Solvegatan 37, Lund, fredagen den 17 September 1999 kl. 10. Fakultetens opponent: Prof. Derek C. G. Muir, National Water Research Institute, Environment Canada, Burlington, Canada. Avhandlingen kommer att forsvaras pa engelska. Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Ecology Dateofi=" Sept 1,1999 Chemical Ecology and Ecotoxicology S-223 62 Lund CODEN: SE-LUNBDS/NBKE-99/1016+144pp Sweden Authors) Sponsoring organization Olof Berglund Title and subtitle The influence of ecological processes on the accumulation of persistent organochlorines in aquatic ecosystems Abstract Several ecological processes influences the fate, transport, and accumulation of persistent organochlorines (OCs) in aquatic ecosystems. In this thesis, I have focused on two processes, namely (i) the food chain bioaccumulation of OCs, and (ii) the trophic status of the aquatic system. To test the biomagnification theory, I investigated PCB concentrations in planktonic food chains in lakes. The concentra­ tions of PCB on a lipid basis did not increase with increasing trophic level. Hence, I could give no support to the theory of bio­ magnification.
    [Show full text]
  • Comprehensive Assessment of Toxic Chemical Pollutants at Trombay Region
    Summary Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other matrices water and soil are less likely to be polluted at the study site.
    [Show full text]
  • Soil Pollution: a Hidden Reality
    SOIL POLLUTION: A HIDDEN REALITY THANKS TO THE FINANCIAL SUPPORT OF RUSSIAN FEDERATION SOIL POLLUTION: AHIDDEN ISBN 978-92-5-130505-8 REALITY 9 789251 305058 I9183EN/1/04.18 SOIL POLLUTION AHIDDEN REALITY SOIL POLLUTION AHIDDEN REALITY Authors Natalia Rodríguez Eugenio, FAO Michael McLaughlin, University of Adelaide Daniel Pennock, University of Saskatchewan (ITPS Member) Reviewers Gary M. Pierzynski, Kansas State University (ITPS Member) Luca Montanarella, European Commission (ITPS Member) Juan Comerma Steffensen, Retired (ITPS Member) Zineb Bazza, FAO Ronald Vargas, FAO Contributors Kahraman Ünlü, Middle East Technical University Eva Kohlschmid, FAO Oxana Perminova, FAO Elisabetta Tagliati, FAO Olegario Muñiz Ugarte, Cuban Academy of Sciences Amanullah Khan, University of Agriculture Peshawar (ITPS Member) Edition, Design & Publication Leadell Pennock, University of Saskatchewan Matteo Sala, FAO Isabelle Verbeke, FAO Giulia Stanco, FAO FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 DISCLAIMER AND COPYRIGHT Recommended citation Rodríguez-Eugenio, N., McLaughlin, M. and Pennock, D. 2018. Soil Pollution: a hidden reality. Rome, FAO. 142 pp. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • The Grasshopper Effect
    The Grasshopper Effect By: Avery, Colleen, Sasha, and Shyanne What is the Grasshopper Effect? ● Scientifically known as global distillation ● The Grasshopper Effect is when persistent organic pollutants and other chemicals are transported from one region to another through wind cycles and heat differences. The Grasshopper Effect (cont.) -it is more common for the chemicals to be released in warmer areas and travel to cooler areas ~ex. poles or mountain tops -process can occur multiple times due to condensation and evaporation ~pollutants released in South America can evaporate and condescend many times before becoming trapped in the cool arctic zones -when trapped chemicals accumulate in the soil, water, and air where they pollute living organisms and humans The Grasshopper Effect (cont.) Chemicals/Pollutants *POP Persistent organic pollutants -carbon based chemical compounds that include PCBs, pesticides, and wastes -POPs are the most common chemical to undergo global distillation, they are able to travel through the air and water far distances -are able to concentrate and bioaccumulate in organisms and humans -they can become a threat to human health and the environment even if the chemicals were not originally released in that area -mostly all POPs effect newborns through breast milk of a mother exposed to the chemicals. DDT (Dichlorodiphenyltrichloroethane) Source: Pesticides that include DDT are absorbed by the soil and bioaccumulated as it gets into plants that humans later eat. DDT also has lasting effects, still remaining in the soil for multiple years. Effects on the human body: DDT stores itself and accumulates in fat and oil cells. It is suspected to be a common cause of breast cancer and is linked to neurological problems such as Parkinsons.
    [Show full text]