Depositional Environments for Strata of Composite Section of Frontier Formation, Madison Range, Southwestern Montana

Total Page:16

File Type:pdf, Size:1020Kb

Depositional Environments for Strata of Composite Section of Frontier Formation, Madison Range, Southwestern Montana Depositional Environments for Strata of Composite Section of Frontier Formation, Madison Range, Southwestern Montana U.S. GEOLOGICAL SURVEY BULLETIN 1949 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtaine.d by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey pu\)lications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis­ of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from • WASHINGTON, D.C.--Main Interior Bldg., 2600 corridor, 18th and C Sts., NW. U.S. Geological Survey, Books and Open-File Reports • DENVER, Colorado--Federal Bldg., Rm. 169, 1961 Stout St. Federal Center, Box 25425 • LOS ANGELES, California--Federal Bldg., Rm. 7638, 300 N. Denver, CO 80225 Los Angeles St. • MENLO PARK, California--Bldg. 3 (Stop 533), Rm. 3128, Subscriptions to periodicals (Earthquakes & Volcanoes and 345 Middlefield Rd. Preliminary Determination of Epicenters) can be obtained ONLY from • RESTON, Vlrglnla--503 National Center, Rm. 1C402, 12201 the Sunrise Valley Dr. • SALT LAKE CITY, Utah--Federal Bldg., Rm. 8105, 125 Superintendent of Documents South State St. Government Printing Office • SAN FRANCISCO, California--Customhouse, Rm. 504, 555 Washington, D.C. 20402 Battery St. • SPOKANE, Washington--U.S. Courthouse, Rm. 678, West (Check or money order must be payable to Superintendent of Docu­ 920 Riverside Ave .. ments.) • ANCHORAGE, Alaska--Rm. 101,4230 University Dr. • ANCHORAGE, Alaska--Federal Bldg, Rm. E-146, 701 C St. Maps For maps, address mail orders to U.S. Geological Survey, Map Distribution Maps Federal Center, Box 25286 Maps may be purchased over the counter at the U.S. Geologi­ Denver, CO 80225 cal Survey offices where books are sold (all addresses in above list) and at the following Geological Survey offices: Residents of Alaska may order maps from • ROLLA, Mlssourl--1400 Independence Rd. Alaska Distribution Section, U.S. Geological Survey, • DENVER, Colorado--Map Distribution. Bldg. 810, Federal New Federal Building - Box 12 Center 101 Twelfth Ave., Fairbanks, AK 99701 • FAIRBANKS, Alaska--New Federal Bldg., 101 Twelfth Ave. Depositional Environments for Strata of Composite Section of Frontier Formation, Madison Range, Southwestern Montana By R.G. TYSDAL U.S. GEOLOGICAL SURVEY BULLETIN 1949 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PRINTING OFFICE: 1991 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Tysdal, Russell G. Depositional environments for strata of composite section of Frontier Formation, Madison Range, southwestern Montana I by R.G. Tysdal. p. em. - (U.S. Geological Survey bulletin ; 1949) Includes bibliographical references (p. ). Supt. of Docs. no.: I 19.3:1949 1. Geology, Stratigraphic-Cretaceous. 2. Geology-Montana-Madison Range. 3. Frontier Formation. I. Title. II. Series. QE75.B9 no. 1949 [QE685] 557.3 s-dc20 90-19939 [551.7'7'09786] CIP CONTENTS Abstract 1 Introduction 1 Purpose of study 3 Previous work 3 Lincoln Mountain measured section 3 Lower delta front facies 4 Sandstone and siltstone 4 Interpretation 7 Delta plain facies 7 Tuff 7 Interpretation 7 Mudstone and siltstone 8 Interpretation 8 Clayey sandstone 8 Interpretation 8 Finely laminated sandstone 8 Interpretation 8 Limestone coquina 9 Interpretation 9 Upper delta front facies 9 Rhythmically interbedded sandstone and siltstone or mudstone 9 Interpretation 9 Contact relationships of facies in Lincoln Mountain measured section 9 Big Sky measured section 10 Interbedded delta front and prodelta facies 10 Rhythmically interbedded sandstone and siltstone or mudstone 10 Interpretation 13 Hummocky crossbedded sandstone 13 Interpretation 13 Bioturbated muddy fine-grained sandstone 15 Interpretation 15 Delta front facies 15 Tabular and trough crossbedded salt-and-pepper sandstone 15 Interpretation 15 Delta plain facies 15 Bioturbated salt-and-pepper sandstone 15 Interpretation 16 Carbonaceous mudstone 16 Interpretation 16 Clayey siltstone and mudstone 16 Interpretation 16 Tuff and bentonite 16 Interpretation 17 Laminated and burrowed sandstone 17 Interpretation 17 Contents Ill Claystone 18 Interpretation 18 Conglomerate, sandstone, and lenticular-bedded siltstone 18 Interpretation 20 Contact relationships of facies in Big Sky measured section 20 Conclusions 20 References cited 21 FIGURES 1. Map of southwestern Montana showing geographic features and location of measured sections of the Frontier Formation in the Madison Range 2 2. Sequence of Cretaceous formations directly above and below Frontier Formation in Madison Range 2 3. Generalized graphic measured section of lower part of composite section of Frontier Formation, measured at Lincoln Mountain 4 4. Generalized graphic measured section of upper part of composite section of Frontier Formation, measured near Big Sky 5 5. Schematic diagram of delta showing environments interpreted from strata of composite measured section 6 6. Classification of sedimentary environments 7 7-11. Photographs showing: 7. Rhythmically interbedded strata overlain and underlain by hummocky cross-laminated sandstone 11 8. Rhythmically interbedded sandstone, siltstone, and mudstone 11 9. Thick sandstone beds in rhythmically interbedded strata 12 10. Ball-and-pillow structure in rhythmically interbedded strata 12 11. Hummocky cross-laminated sandstone 14 12. Sequence of sedimentary structures in hummocky crossbedded strata 14 13-14. Photographs showing: 13. Ball-and-pillow structure in tuff bed of delta plain strata 17 14. Tidal channel sandstone and mudstone in upper part of delta plain strata 19 IV Contents Depositional Environments for Strata of Composite Section of Frontier Formation, Madison Range, Southwestern Montana By R.G. Tysdal ABSTRACT front. Some of the individual sandstone beds within the prodelta strata show hummocky crossbeds, interpreted as The Frontier Formation was measured in two partial single-event distal storm deposits. Delta front sandstones of the sections in the Madison Range in order to obtain nearly foreshore and backshore record upward shallowing complete exposures for stratigraphic and sedimentologic environments. interpretation. The two sections form a composite section for A delta plain facies forms the upper 25 m (82 ft) of the the Frontier. The lower section of the Frontier, measured at measured section near Big Sky. The strata consist of carbona­ Lincoln Mountain where it is 102m (336ft) thick, is a tripartite ceous to coaly mudstone, siltstone and claystone, and tuff. succession. The lower part consists mainly of sandstone and These rocks include abundant fresh and brackish water bioturbated sandstone deposited in a lower shoreface megafossils and sedimentary structures indicative of delta environment of a delta front facies. These strata are plain lakes and brackish water swamps. The tuffs range from conformable with the underlying Mowry Shale. The middle well indurated, silicified beds to deeply weathered bentonitic part is composed ofthin interbedded strata laid down in a delta strata. Some of the tuffs were deposited within water, showing plain setting. Tuff of the middle part forms a marker unit of ball-and-pillow structures, whereas other beds may have been resistant outcrops and likely was deposited subaerially. deposited subaerially. Uppermost strata of the delta plain Carbonaceous mudstone forms marsh deposits that grade into sequence constitute an estuarine tidal channel deposit that sandstone interpreted as deposits of a sandflat marginal to a consists, in ascending order, of pebble conglomerate, fine­ lagoon or bay. At one horizon in the middle part, a gently grained sandstone that contains
Recommended publications
  • Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y. Meslin2, R. B. Anderson7, B. Barraclough4, J. F. Bell III8, G. Berger2, D. L. Blaney9, J. C. Bridges10, through Yellowknife Bay F. Calef9, B. Clark11, S. M. Clegg5, A. Cousin5, L. Edgar8, K. Edgett12, B. Ehlmann4, C. Fabre13, M. Fisk14, J. Grotzinger4, S. Gupta15, K. E. Herkenhoff7, J. Hurowitz16, J. R. Johnson17, L. C. Kah18, N. Lanza19, Key Points: 2 1 20 21 12 16 2 • J. Lasue , S. Le Mouélic , R. Léveillé , E. Lewin , M. Malin , S. McLennan , S. Maurice , Fluvial sandstones analyzed by 22 22 23 19 19 24 25 ChemCam display subtle chemical N. Melikechi , A. Mezzacappa , R. Milliken , H. Newsom , A. Ollila , S. K. Rowland , V. Sautter , variations M. Schmidt26, S. Schröder2,C.d’Uston2, D. Vaniman27, and R. Williams27 • Combined analysis of chemistry and texture highlights the role of 1Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes, Nantes, France, 2Institut de Recherche diagenesis en Astrophysique et Planétologie, CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 3Laboratoire de Géologie de • Distinct chemistry in upper layers 4 5 suggests distinct setting and/or Lyon, Université de Lyon, Lyon, France, California Institute of Technology, Pasadena, California, USA, Los Alamos National 6 source Laboratory, Los Alamos, New Mexico, USA, Earth and Planetary Sciences, University of California, Davis, California, USA, 7Astrogeology Science Center, U.S.
    [Show full text]
  • A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin
    DOE/NETL-2011/1478 A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin U.S. DEPARTMENT OF ENERGY DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms, suggestions, and support significantly improved the content, and we are deeply grateful. Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Ichnology, Depositional Dynamics and Sequence Stratigraphy Of
    ICHNOLOGY, DEPOSITIONAL DYNAMICS AND SEQUENCE STRATIGRAPHY OF THE PLIO-PLEISTOCENE ORINOCO DELTA: MAYARO AND MORNE L’ENFER FORMATIONS, SOUTHERN TRINIDAD A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Ph.D.) In the Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada By SUDIPTA DASGUPTA Copyright Sudipta Dasgupta, November, 2015. All rights reserved. PERMISSION TO USE In presenting this thesis as the partial fulfillment of requirements for a Ph.D. degree from the University of Saskatchewan, I understand and confirm that the Libraries of this University may make it freely available for inspection. I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be allowed by the Dr. Luis A. Buatois who supervised my thesis work or, in his absence, by the Head, Department of Geological Sciences, or the Dean of the Colleges of Graduate Studies and Research (CGSR), in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for any direct or indirect financial gain shall not be allowed without my written permission or, in my absence, without written permission from my immediate heir. It is also implicit that appropriate recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. DISCLAIMER References in this thesis to any specific commercial product(s), process(es), or service(s) by trade name(s), trademark(s), manufacturer(s), private company(ies), or otherwise, does not constitute or imply its(or their) endorsement, recommendation, or favoring by me or the University of Saskatchewan.
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]
  • Mineralogy and Geochemistry of Carbonaceous Mudstone As a Vector to Ore: a Case Study at the Lagunas Norte High-Sulfidation Gold Deposit, Peru
    MINERALOGY AND GEOCHEMISTRY OF CARBONACEOUS MUDSTONE AS A VECTOR TO ORE: A CASE STUDY AT THE LAGUNAS NORTE HIGH-SULFIDATION GOLD DEPOSIT, PERU by Harry Hanneman A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date ________________ Signed: ________________________ Harry Hanneman Signed: ________________________ Dr. Thomas Monecke Thesis Advisor Golden, Colorado Date ________________ Signed: ________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT The Lagunas Norte Au deposit in the Alto Chicama district of Peru is a ~14 Moz high- sulfidation epithermal deposit that is hosted by an atypical host-rock succession for this deposit type. Approximately 80% of the ore body is contained in the Lower Cretaceous Chimu Formation, which is composed of quartz arenite with interbedded carbonaceous mudstone, siltstone, and coal seams. The remainder of the ore is hosted by the Miocene volcanic rocks of the Calipuy Group, forming an irregular and thin veneer on the deformed sedimentary rocks of the basement. The host rock succession of the Lagunas Norte deposit has been affected by widespread hydrothermal alteration. The alteration is cryptic within most of sedimentary rocks as the quartz arenite was largely inert to alteration by the strongly acidic fluids. Vuggy textures associated with residual quartz alteration can only be recognized in the overlying Miocene volcanic rocks. However, the present study shows that mudstone of the Chimu Formation records acid-type alteration due to its originally high clay mineral content.
    [Show full text]
  • BUIL])ING STON.E O·F WASHINGTON
    BUIL])ING STON.E o·f WASHINGTON By WAYNE S. MOEN Washington Department of Conservation Division of Mines and Geology Bulletin No. 55 1967 State of Washington DANIEL J. EV ANS, Governor Department of Conservation H. MAURICE AHLQUIST, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 55 BUILDING STONE OF WASHINGTON By WAYNE S. MOEN STATE PRINTING PLANT. OLYMPI A , WASHINGTON 1967 For sale by Department Pof? ceConsl]SliARYervation, Olympia, Washington. PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION etnDTLAND. OR£00N CONTENTS Poge Introduction 7 General history .. ...... ...........................•............ 8 Production and vo lue . 10 Forms of building stone . 12 Field stone . 12 Rough building stone . 13 Rubble . • . 14 Flogging (flagstone) . 14 Ashlar . .. ......... ........ , ................. , . , . 15 Crushed stone . 16 Terrozzo . 17 Roofing granules.............. .... ..... ......... 18 Exposed aggregate . 18 Reconstituted stone . • . 19 Landscape rock . 20 Area coverage of bui Iding stone . 21 Acquisition of bui )ding stone . 22 Examination of stone deposits . 23 General quarrying methods . 24 Physical properties of building stone . 26 Strength . 26 Hardness and workabi Iity . • . 27 Color . 28 Alteration ....•...................... , ........... , . 29 Porosity and absorption ...........•. : . 31 Testing of building stone... .. .................... ................ 33 Common building stones of Washington . 34 Granite . 35 Geology and distribution . 35 Physical properties . 38 Varieties
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • The Geology of the Lyndonville Area, Vermont
    THE GEOLOGY OF THE LYNDONVILLE AREA, VERMONT By JOHN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT COMMISSION MONTPELIER, VERMONT BULLETIN NO. 8 1956 Lake Willoughby, seen from its north shore. TABLE OF CONTENTS ABSTRACT ......................... 7 INTRODUCTION 8 Location 8 Geologic Setting ..................... 8 Previous Work ...................... 8 Purpose of Study ..................... 9 Method of Study 10 Acknowledgments . 11 Physiography ...................... 11 STRATIGRAPHY ....................... 16 Lithologic Descriptions .................. 16 Waits River Formation ................. 16 General Statement .................. 16 Distribution ..................... 16 Age 17 Lithological Detail .................. 17 Gile Mountain Formation ................ 19 General Statement .................. 19 Distribution ..................... 20 Lithologic Detail ................... 20 The Waits River /Gile Mountain Contact ........ 22 Age........................... 23 Preliminary Remarks .................. 23 Early Work ...................... 23 Richardson's Work in Eastern Vermont .......... 25 Recent Detailed Mapping in the Waits River Formation. 26 Detailed Work in Canada ................ 28 Relationships in the Connecticut River Valley, Vermont and New Hampshire ................... 30 Summary of Presently Held Opinions ........... 32 Discussion ....................... 32 Conclusions ...................... 33 STRUCTURE 34 Introduction and Structural Setting 34 Terminology ......................
    [Show full text]
  • Descriptions of Common Sedimentary Environments
    Descriptions of Common Sedimentary Environments River systems: . Alluvial Fan: a pile of sediment at the base of mountains shaped like a fan. When a stream comes out of the mountains onto the flat plain, it drops its sediment load. The sediment ranges from fine to very coarse angular sediment, including boulders. Alluvial fans are often built by flash floods. River Channel: where the river flows. The channel moves sideways over time. Typical sediments include sand, gravel and cobbles. Particles are typically rounded and sorted. The sediment shows signs of current, such as ripple marks. Flood Plain: where the river overflows periodically. When the river overflows, its velocity decreases rapidly. This means that the coarsest sediment (usually sand) is deposited next to the river, and the finer sediment (silt and clay) is deposited in thin layers farther from the river. Delta: where a stream enters a standing body of water (ocean, bay or lake). As the velocity of the river drops, it dumps its sediment. Over time, the deposits build further and further into the standing body of water. Deltas are complex environments with channels of coarser sediment, floodplain areas of finer sediment, and swamps with very fine sediment and organic deposits (coal) Lake: fresh or alkaline water. Lakes tend to be quiet water environments (except very large lakes like the Great Lakes, which have shorelines much like ocean beaches). Alkaline lakes that seasonally dry up leave evaporite deposits. Most lakes leave clay and silt deposits. Beach, barrier bar: near-shore or shoreline deposits. Beaches are active water environments, and so tend to have coarser sediment (sand, gravel and cobbles).
    [Show full text]
  • Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States
    Graduate Theses, Dissertations, and Problem Reports 2011 Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States Margaret E. Walker-Milani West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Walker-Milani, Margaret E., "Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States" (2011). Graduate Theses, Dissertations, and Problem Reports. 3327. https://researchrepository.wvu.edu/etd/3327 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Outcrop Lithostratigraphy and Petrophysics of the Middle Devonian Marcellus Shale in West Virginia and Adjacent States Margaret E. Walker-Milani THESIS submitted to the College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Geology Richard Smosna, Ph.D., Chair Timothy Carr, Ph.D. John Renton, Ph.D. Kathy Bruner, Ph.D.
    [Show full text]
  • Sandstone Problems
    CONSERVATION TALK Michael Trinkley Why Sandstone Monuments Have So Many Problems Whether in the Carolinas, Utah or Massachusetts biggest cause is the effect of moisture, brought on by many sandstone are in very poor condition. Why? And capillary action, humidity and even a monument's perhaps even more importantly, what can be done? environment and micro-climate. Sources not related to Sandstone is a sedimentary rock, meaning that moisture include solar and UV radiation, as well as minerals or organic particles have settled in layers and the structural issues-although I don't believe any of these layers have gradually formed into rock. They often (but not are as important as moisture. Contributing to the always) have distinct bedding planes-or layers. Geologists problems caused by moisture are salts and air pollution. generally divided sedimentary rocks into three categories So let's look at a few of the more common problems. and most of what we see in cemeteries may be classified as Keep in mind that relatively little conservation research "clastic." These are formed by the accumulation of has been conducted concerning these problems, so there mechanically distintegrated rocks that are cemented remains much debate-and few simple answers. together. Air pollution can cause what are known as Sandstones are composed of quartz, feldspar, silicates, pollution crusts-often hard and brittle, leaving the stone mica, hornblende, and clay minerals that are cemented with beneath soft, friable, and disaggregating. They may also either siliceous or carbonate/calcite cement (see Table 1). It be known as carbon deposits. Found in urban settings is largely these cementing materials that affect the they are formed from pollution products, including longevity of one sandstone over another.
    [Show full text]