Eighth International Conference on Mars (2014) 1349.pdf ORGANIC MOLECULES IN THE SHEEPBED MUDSTONE, GALE CRATER, MARS. C. Freissinet1,2, D. P. Glavin1, P. R. Mahaffy1, K. E. Miller3, J. L. Eigenbrode1, R. E. Summons3, A. E. Brunner1, A. Buch5, C. Szopa6, P. D. Archer7, H. B. Franz1, A. Steele6 et al.
[email protected] 1Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. 2NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. 3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4Laboratoire de Génie des Procédés et Matériaux, Ecole Centrale Paris, 92295 Châtenay-Malabry, France. 5Laboratoire Atmosphères, Milieux, Observations Spatiales, Univ. Pierre et Marie Curie, Univ. Versailles Saint- Quentin & CNRS, 75005 Paris, France. 6Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA. 6Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015. Introduction: The Sample Analysis at Mars spectra and used to estimate the initial amount of (SAM) instrument on the Curiosity rover is designed to MTBSTFA present in the sample. The presence of determine the inventory of organic and inorganic vola- MTBSTFA and other reactive species in the back- tiles thermally released from solid samples using a ground can create newly formed products by interac- combination of evolved gas analysis (EGA), gas chro- tion with inorganic species in the martian regolith, matography mass spectrometry (GCMS), and tunable such as oxychlorine compounds [3]. Before confirming laser spectroscopy [1]. Here we report on various chlo- detection of martian molecules, the possibility that rinated hydrocarbons (chloromethanes, chlorobenzene these compounds could be derived from reactions be- and dichloroalkanes) detected at elevated levels above tween martian volatiles and terrestrial components instrument background at the Cumberland (CB) drill internal to SAM has to be eliminated.