Perspectives on Sustainable Management of the Poso Lake (Indonesia) Endemic Ricefish, Oryzias Nigrimas (Actinopterygii: Adrianichthyidae)

Total Page:16

File Type:pdf, Size:1020Kb

Perspectives on Sustainable Management of the Poso Lake (Indonesia) Endemic Ricefish, Oryzias Nigrimas (Actinopterygii: Adrianichthyidae) ISSN Printed: 0034-7744 ISSN digital: 2215-2075 DOI 10.15517/rbt.v69i1.42404 Perspectives on sustainable management of the Poso Lake (Indonesia) endemic ricefish, Oryzias nigrimas (Actinopterygii: Adrianichthyidae) Novalina Serdiati1*, Diana Arfiati2, Maheno Sri Widodo2, Tri Djoko Lelono3, Samliok Ndobe1, Kasim Mansyur1 & Abigail Mary Moore4 1. Aquaculture Study Program, Tadulako University, Palu, Central Sulawesi, Indonesia; [email protected], [email protected], [email protected] 2. Department of Aquatic Resources Management, Brawijaya University, Malang, Indonesia; [email protected], [email protected] 3. Department of Utilization of Fisheries and Marine Resources, Brawijaya University, Malang, Indonesia; [email protected] 4. Postgraduate School, Hasanuddin University, Makassar, South Sulawesi, Indonesia; [email protected] * Correspondence Received 22-VI-2020. Corrected 28-X-2020. Accepted 09-XI-2020. ABSTRACT. Introduction: The endemic fishes of the ancient lakes of Sulawesi are under increasing threat. Objective: To evaluate the data and information available from a holistic management perspective and to formu- late measures to conserve the endemic ricefish Oryzias nigrimas in Poso Lake, Indonesia. Methods: Collection of primary data from three stations around Lake Poso and literature study. Results: Threats to O. nigrimas include habitat degradation and loss, introduced alien species, and exploitation as a locally important food fish. Options to promote sustainable fisheries management include spatial and temporal limitations to minimise catch of gravid or brooding fish. Habitat protection should include measures to minimise impacts from activities which can reduce water quality and disturb or kill aquatic vegetation. Conclusion: Measures to prevent further O. nigrimas population decline are considered urgent and further research is recommended to fill identified knowledge gaps. Ex-situ conservation, including the development of captive breeding, could also contribute to a holistic O. nigrimas conservation strategy. Key words: endemism; lacustrine; Oryziinae; black buntingi; invasive species; light fishing. Serdiati, N., Arfiati, D., Widodo, M.S., Lelono, T.D., Ndobe, S., Mansyur, K., & Moore, A.M. (2021). Perspectives on sustainable management of the Poso Lake (Indonesia) endemic ricefish, Oryzias nigrimas (Actinopterygii: Adrianichthyidae). Revista de Biología Tropical, 69(1), 139-152. DOI 10.15517/rbt.v69i1.42404 Sulawesi Island, the largest landmass in 2006; Meixner et al., 2007; Schubart & Ng, the Wallacea region, is renowned for high 2008; Walter, Hogan, Haffner, & Heath, 2011; levels of endemicity, including aquatic taxa von Rintelen & Cai, 2009; Mokodongan & (Hadiaty, 2018; von Rintelen & Cai, 2009; von Yamahira, 2015; Vaillant, Bock, Haffner, & Rintelen, Stelbrink, Marwoto, & Glaubrecht, Cristescu, 2013; von Rintelen et al., 2014) 2014). The “ancient lakes” of Sulawesi, includ- The ricefishes (Adrianichthyidae) are a ing the Malili Lake complex in South Sulawesi family with 33 recognised (valid) species in and Poso Lake in Central Sulawesi, are espe- 2013 (Kottelat, 2013), a number which has since cially rich in endemic fishes and invertebrates increased to at least 37 (Mandagi, Mokodon- (Meisner, 2001; von Rintelen & Glaubrecht, gan, Tanaka, & Yamahira, 2018), including the Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 139-152, March 2021 139 description of two new species from Sulawesi: Least Concern (LC) including the Poso Lake Oryzias soerotoi (Mokodongan, Tanaka, & endemic Xenopoecilus oophorus (synonyms Yamahira, 2014); Oryzias dopingdopingensis Adrianichthys oophorus and Oryzias oopho- (Mandagi et al., 2018). Of these 37 species, 21 rus) (Mokodongan, 2019m) and O. celebensis ricefishes are native to Sulawesi, a recognised (Lumbantobing, 2019a). However, concerns “hotspot” of biodiversity for this fish fam- have been expressed regarding the threats to ily (Parenti, 2008; Mokodongan et al., 2014; and urgent need for conservation of all Sulawe- Hadiaty, 2018; Mandagi et al., 2018). While si endemic freshwater fishes (Parenti, 2011), Oryzias javanicus is widely distributed across including X. oophorus (Gundo, 2010). Southeast Asia (Mokodongan, 2019a), and O. Among the ancient lakes of Sulawesi, celebensis (previously considered endemic to the ichthyofauna of Lake Poso is particularly Sulawesi alone has also been reported from rich in ricefishes with seven endemic species East Timor (Parenti, 2008; Hadiaty, 2018; (Hadiaty, 2018). The taxonomy of ricefishes Lumbantobing, 2019a), the majority (19 spe- at the genus and species levels is a matter of cies or 90.5 %) of the Sulawesi ricefishes are ongoing research (Mokodongan et al., 2018; endemic to one or more of the ancient lakes Parenti, 2008), with several synonyms in cur- and/or certain riverine systems in Sulawesi rent use for some species (e.g. X. oophorus). (Parenti, 2008; Hadiaty, 2018; Mandagi et al., Using the taxonomy according to Kottelat 2018; Lumbantobing, 2019b; Lumbantobing, (2013), the ricefishes recorded in Poso Lake 2019c; Lumbantobing, 2019d; Mokodongan, are: Oryzias nigrimas (Parenti, 2008; Serdiati, 2019b; Mokodongan, 2019c; Mokodongan, Arfiati, Widodo, Lelono, & Gosari, 2019a; 2019d; Mokodongan, 2019e; Mokodongan, Serdiati et al., 2020), O. nebulosus (Parenti & 2019f; Mokodongan, 2019g; Mokodongan, Soeroto, 2004; Serdiati, Arfiati, Widodo, Lelo- 2019h; Mokodongan, 2019i; Mokodongan, no, & Toha, 2019b), O. orthognathus (Parenti 2019j; Mokodongan, 2019k; Mokodongan, & Soeroto, 2004), Xenopoecilus oophorus and 2019l; Mokodongan, 2019m; Mokodongan, X. poptae (Parenti, 2008), Adrianichthys kruy- 2019n; Mokodongan, 2019o; Mokodongan, ti (Parenti, 2008), and A. roseni (Parenti & 2019p; Mokodongan, 2019q). Soeroto, 2004). Species with such restricted natural ranges are intrinsically vulnerable to extinction (Wal- Anthropogenic activities pose many direct ter et al., 2011). The 2019 version of The IUCN and indirect threats to the environment in and Red List of Endangered Species™ (hereafter around Poso Lake (Nursangaji et al., 2014; referred to as the IUCN Red List) provides Mamondol, 2018), Despite their small size, assessments of the conservation status accord- several ricefishes are exploited as food fish ing to the criteria of the International Union for (Gundo, 2010; Parenti & Soeroto, 2004), while the Conservation of Nature (IUCN) for 36 rice- the remainder may well be caught as by- fishes (Family Adrianichthyidae), including all catch in targeted (ricefish) and other fisheries. but one (O. dopingdopingensis) of the 21 rice- Sulawesi ricefishes are also being proposed fishes reported from Sulawesi. One Sulawesi as potential model organisms for research in endemic (O. wolasi) is classed as Data Defi- fields as diverse as the study of evolution, cient (DD), meaning the data available are behavioural, biological and medical research insufficient to assign a conservation status. (Mokodongan & Yamahira, 2015; Mokodon- Globally, half of the assessed ricefishes gan et al., 2018; Sari, Andriani, & Yaqin, 2018; are classed within one of the IUCN Red Hilgers & Schwarzer, 2019; Sutra et al., 2019). List categories indicating a significant risk Seven of the eight ricefish species assessed as of extinction; it is remarkable that 89 % of Near Threatened (NT) in the 2019 IUCN Red these are ricefishes endemic to Sulawesi. A List are endemic to Sulawesi, and three to Lake third of all assessed ricefishes are classed as Poso: O. nebulosus (Mokodongan, 2019g), 140 Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 139-152, March 2021 O. orthognathus (Mokodongan, 2019h), and O. of approximately 35.9 km and 15.3 km. The nigrimas (Mokodongan, 2019n). narrow shallow shelf around the shore reaches The purpose of this study was to evaluate depths of around 5-7 m then plunges steeply the Poso endemic ricefish O. nigrimas from to a maximum depth of ≈ 385 m, with a mean a holistic conservation management perspec- depth of 194.7 m and nearly 2m fluctuation in tive. Based on primary survey data combined water level between rainy and dry seasons. with secondary data and information, the study aimed to provide guidance on potential man- Data collection: Primary data were col- agement measures to sustain this species. lected primarily at three survey stations around Poso Lake (Fig. 1) on a monthly basis from May 2017 to April 2018. These sites were MATERIALS AND METHODS selected based on information from local fish- ermen and data from previous surveys. Quan- Field study site: Poso lake (Fig. 1) is titative in situ measurements visibility (m, situated in Poso District, Central Sulawesi Secchi disc), dissolved oxygen (DO) (mg/l, Province, Indonesia (1º41’18.42”-2º18’3.41” Lutron DO-5510) temperature (ºC) and pH S & 120º21’27.10”-120º51’9.28” E) at an alti- (ATC Tri-meter) were supplemented by quali- tude of approximately 657 m above sea level tative observations on habitat condition. As (Nontji, 2016). Based on measurements made no fisheries statistics were available for O. in 2007 (Lukman & Ridwansyah, 2009), Poso nigrimas and other endemic fishes in Poso Lake covers an area of 368.9 km2 (36 890 ha), Lake, qualitative data on O. nigrimas exploi- with a shoreline of 127 km, length and width tation and trends in abundance were obtained Fig. 1. Map of Poso Lake showing Oryzias nigrimas observation stations and the surrounding sub-districts (adapted from Serdiati et al., 2020). Rev. Biol. Trop. (Int. J. Trop. Biol.) • Vol. 69(1): 139-152,
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • A Synopsis of the Parasites of Medaka (Oryzias Latipes) of Japan (1929-2017)
    生物圏科学 Biosphere Sci. 56:71-85 (2017) A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA Graduate School of Biosphere Science, Hiroshima University 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan November 2017 生物圏科学 Biosphere Sci. 56:71-85 (2017) REVIEW A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA* Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Abstract Information on the protistan and metazoan parasites of medaka, Oryzias latipes (Temminck and Schlegel, 1846), from Japan is summarized based on the literature published for 89 years between 1929 and 2017. This is a revised and updated checklist of the parasites of medaka published in Japanese in 2012. The parasites, including 27 nominal species and those not identified to species level, are listed by higher taxa as follows: Ciliophora (no. of nominal species: 6), Cestoda (1), Monogenea (1), Trematoda (9), Nematoda (3), Bivalvia (5), Acari (0), Copepoda (1), and Branchiura (1). For each parasite species listed, the following information is given: its currently recognized scientific name, any original combination, synonym(s), or other previous identification used for the parasite from medaka; site(s) of infection within or on the host; known geographical distribution in Japanese waters; and the published source of each record. A skin monogenean, Gyrodatylus sp., has been encountered in research facilities and can be regarded as one of the most important parasites of laboratory-reared medaka in Japan.
    [Show full text]
  • Micromorphological Observation of the Anterior Gut of Sulawesi Medaka Fish (Oryzias Celebensis)
    Int.J.Curr.Microbiol.App.Sci (2018) 7(2): 2942-2946 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 02 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.702.357 Micromorphological Observation of the Anterior Gut of Sulawesi Medaka Fish (Oryzias celebensis) Dwi Kesuma Sari1*, Irma Andriani2 and Khusnul Yaqin3 1Study Program of Veterinary Medicine, Faculty of Medicine, Hasanuddin University, Jl. Perintis kemerdekaan Km. 10, Makassar, South Sulawesi, Indonesia 2Pstudy Program of Biology, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia 3Faculty of Marine Sciences and Fisheries, Hasanuddin University, Indonesia *Corresponding author ABSTRACT K e yw or ds The use of medaka fish as a candidate animal model has been started which has similarities Sulawesi medaka with the Zebra fish that was developed as an animal model. Sulawesi medaka fish (Oryzias fish, Anterior gut, celebensis) is a type of medaka fish that are endemic in the region of South Sulawesi. This Buccal cavity, research aims to observe the histology of anterior gut of Sulawesi medaka fish. Oesophagus Histological study on the anterior gut of Sulawesi medaka fish using buccal cavity and oesophagus organs. Histological observation showed that the mouth and buccal cavity are Article Info shared by the respiratory and digestive systems. Also in Sulawesi medaka fish we found Accepted: the lining of the buccal cavity consists of mucoid epithelium on a thick basement 26 January 2018 membrane with numerous goblet cells. In general the structure of the anterior gut system in Available Online: Sulawesi medaka fish similar with Zebra fish as well as other Teleostei fish.
    [Show full text]
  • GESCHÄFTSBERICHT 2019 GEFÖRDRT VOM FORSCHUNGS Museum GESCHÄFTSBERICHT 2019 KOENIG
    GESCHÄFTSBERICHT 2019 GEFÖRDRT VOM FORSCHUNGS museum GESCHÄFTSBERICHT 2019 KOENIG INHALT VORWORT 3 1. STAND UND ENTWICKLUNG DER STIFTUNG 5 1.1 Zusammenfassung für das Jahr 2019 5 1.2 Profil des ZFMK als Forschungsmuseum 8 1.3 Organisation 9 1.4 Strukturentwicklung 11 1.5 Sammlungen und Datenbestände 11 1.5.1 Zentrum für Taxonomie und Evolutionsforschung (zte) 11 1.5.2 Biobank 19 1.6 Wissenschaft und Forschung 20 1.6.1 Zentrum für Taxonomie und Evolutionsforschung (zte) 20 1.6.2 Zentrum für Molekulare Biodiversitätsforschung (zmb) 24 1.6.3 Zentrum für Biodiversitätsmonitoring (zbm) 28 1.6.4 Biohistoricum 30 1.7 Veröffentlichungen, Vorträge, Tagungen 31 1.7.1 Vorträge, Tagungen 31 1.7.2 Veröffentlichungen 32 1.8 Drittmitteleinwerbungen 37 1.9 Öffentlichkeitsarbeit und Museumspädagogik 39 1.10 Ausstellungen 40 1.11 Beschäftigte 42 1.12 Gleichstellung 44 1.13 Nachwuchsförderung 45 1.14 Beschaffung 46 1.15 Interne Steuerung 48 1.16 Finanzielle Entwicklung 49 2. JAHRESABSCHLUSS 2019 51 2.1 Bilanz 51 2.2 Gewinn- und -Verlustrechnung 52 2.3 Anhang 52 2.4 Anlagespiegel 53 2.5 Prüfungsergebnis des Abschlussprüfers 53 3. ORGANE UND GREMIEN 53 3.1 Stiftungsrat 54 3.2 Direktorin / Direktor 55 3.3 Wissenschaftlicher Beirat 55 4. ANLAGEN 57 4.1 Publikationen 57 4.2 Wissenschaftlicher Nachwuchs 63 4.3 Vorträge 65 4.4 Drittmittelprojekte 69 4.5 Mitglieder der Organe der Stiftung 71 4.6 Organigramm 72 3 FORSCHUNGS museum GESCHÄFTSBERICHT 2019 KOENIG Verwendete Abkürzungen Abk. Erläuterung 1KITE 1,000 Insect Transcriptome Evolution (project) AKG Alexander-Koenig-Gesellschaft e.V.
    [Show full text]
  • Collection of Freshwater and Coastal Fishes from Sulawesi Tenggara, Indonesia [Koleksi Ikan-Ikan Air Tawar Dan Pantai Di Sulawesi Tenggara] Lynne R
    Jurnal Iktiologi Indonesia, 14(1):1-19 Collection of freshwater and coastal fishes from Sulawesi Tenggara, Indonesia [Koleksi ikan-ikan air tawar dan pantai di Sulawesi Tenggara] Lynne R. Parenti1,, Renny K. Hadiaty2, Daniel N. Lumbantobing1,3 1National Museum of Natural History, Smithsonian Institution PO Box 37012, NHB MRC 159, Washington, D.C. 20013-7012 USA 2Museum Zoologicum Bogoriense, Division of Zoology, Research Center for Biology Indonesian Institute of Sciences (LIPI) Jln. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia 3Florida Museum of Natural History Museum Road and Newell Drive, Gainesville, FL 32611-7800. Received: October 9, 2013; Accepted: January 21, 2014 Abstract We report 69 fish species in 34 teleost families nearly all collected during a preliminary survey of the Sungai Pohara and coastal localities in Sulawesi Tenggara, including Muna Island, in June 2010. Of these species, nine are introduced or exotic and another is questionably native. The family Gobiidae is the most diverse taxon, represented by 14 native species. Atherinomorph fishes of the family Adrianichthyidae are represented in the province by four endemic species and two others that are widespread, all in the genus Oryzias. This fish fauna contrasts sharply with the riverine ichthyo- fauna of the adjacent Sulawesi Tenggara islands of Buton and Kabaena in which there are reportedly no ricefishes and few endemics. New species are being described by the field team and collaborators. Our ultimate goal is to discover, describe, highlight, understand and encourage the conservation of the native freshwater and coastal fish biota of Sula- wesi. Keywords: endemic fishes, introduced species, Oryzias, Sungai Pohara Abstrak Kami melaporkan hasil survei pendahuluan di Sungai Pohara dan perairan pantai di Sulawesi Tenggara, termasuk Pulau Muna.
    [Show full text]
  • Genetic Resources for Aquaculture: Status and Trends
    109 Genetic resources for aquaculture: status and trends Roger S.V. Pullin 7A Legaspi Park View, 134 Legaspi Street, Consultant, Philippines 1. SUMMARY Aquaculture, the farming of aquatic plants and animals, has grown consistently since 1970, when it provided only 3.9 percent of world fish supply. In 2004, global production of farmed fish (mainly crustaceans, molluscs and finfish) was over 45 million tonnes, comprising about 32 percent of total world fish supply, while the total production of farmed seaweeds for food and extraction of chemicals, was about 13.9 million t. Aquaculture also provides increasing proportions of the world’s supply of ornamental aquatic organisms. Over 90 percent of aquaculture takes place in developing countries, where it has high importance for poor people in terms of nutrition and livelihoods and where further responsible development of aquaculture, integrated with other natural resource use, has high potential for future growth. Based upon statistics submitted to FAO by its member States, about 84 percent of farmed fish production comes from Asia, with 67 percent coming from the Peoples’ Republic of China. However, aquaculture is increasing in importance in all developing regions and is expected to provide about 50 percent of world food fish supply within the next 20 years. The future of aquaculture will depend in large measure upon the effective management of the genetic resources for farmed aquatic plants (PGR) and farmed fish (FiGR), as well as those for the organisms that provide their food and ecosystem services. Fish farms are agroecosystems and aquatic genetic resources for aquaculture on farms are part of agrobiodiversity.
    [Show full text]
  • Fish Fauna of the Sikao Creek Mangrove Estuary, Trang, Thailand
    FISHERIES SCIENCE 2002; 68: 10–17 Original Article Fish fauna of the Sikao Creek mangrove estuary, Trang, Thailand Prasert TONGNUNUI,1 Kou IKEJIMA,2–4* Takeshi YAMANE,4 Masahiro HORINOUCHI,4 Tomon MEDEJ,1 Mitsuhiko SANO,4 Hisashi KUROKURA4 AND Toru TANIUCHI2a 1Faculty of Science and Fisheries Technology, Rajamangala Institute of Technology, Sikao, Trang 92150, Thailand, 2Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, 3Asian Natural Environmental Science Center and 4Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan ABSTRACT: Between September 1996 and March 1999, a total of 135 fish species in 43 families were recorded from the mangrove estuary of Sikao Creek, Trang Province, Thailand, using two sizes of beach seine and a bag net. A checklist of the species is given, with preliminary descriptions of their assemblage structure. In terms of the number of species per family, Gobiidae was the most diverse (28 species), followed by Leiognathidae (11 species) and Engraulidae (10 species). In terms of individual numbers, Engraulidae, Leiognathidae and Ambassidae were the most dominant, whereby the 20 most abundant species comprised 88.5% of the total number of individuals collected. The fish assemblage structure was compared with published accounts of other tropical Indo-West Pacific mangrove estuaries, and found to be similar to those of tropical Australia. Although a grater number of species were recorded from Sikao Creek than in comparable studies in other geographic regions, all of the studies were similar in that they have relatively few species that are clearly dominant in abundance.
    [Show full text]
  • KAJIANILMIAHIKAN PELANGI {Marosatherina Ladigesi (Ahl 1936)} FAUNA ENDEMIK SULAWESI [Scientific Review of a Rainbow Fish {Marosa
    Berita Biologi 8(6) - Desember 2007 KAJIANILMIAHIKAN PELANGI {Marosatherina ladigesi (Ahl 1936)} FAUNA ENDEMIK SULAWESI [Scientific review of a rainbow fish {Marosatherina ladigesi (Ahl 1936)} an endemic fauna of Sulawesi] Renny Kurnia Hadiaty Bidang Zoologi, Puslit Biologi-LIPI Jl. Raya Bogor Km 46, Cibinong 16911; email13: [email protected] ABSTRACT Marosatherina ladigesi is one of the famous rainbow fish species from Sulawesi. This endemic fish species from Sulawesi is one of the Indonesian export commodity since more than 30 years ago. All of the export specimens come from the wild habitat. The anxiousness of the extinction of this species stated in the redlist of IUCN since 1994. Two field work of Maros Karst Project conducted in 2006, 2007 and an international expedition in 2007 showed the decreasing population of this species. The results of the three field trips showed the difficulties to get M. ladigesi in the streams. Taxonomical status and classification, coloration, sex dimorphism and distribution discussed. Kata kunci: Marosatherina ladigesi, endemik, langka, Sulawesi PENDAHULUAN Ikan Hias Indonesia (PIHI) menggunakan satu jenis Ikan Pelangi atau 'rainbow fish' sudah lama Pelangi Sulawesi, yaitu jenis Marosatherina ladigesi dikenal oleh masyarakat Indonesia. Dinamai ikan sebagai logo dari organisasi tersebut. Pelangi karena pola warnanya yang menyerupai Ikan Pelangi Sulawesi sangat populer di pelangi. Ikan ini cukup populer di kalangan penggemar kalangan penggemar ikan hias di dunia, hasil pencarian ikan hias, karena mudah dipelihara dan harganya pun di situs internet diperoleh 2080 judul untukM ladigesi. tidak terlalu mahal. Ikan Pelangi yang beredar di Ironisnya, masyarakat yang tinggal di habitat asli ikan pasaran dalam negeri berasal dari Propinsi Papua.
    [Show full text]
  • A Revised Taxonomic Account of Ricefish Oryzias (Beloniformes; Adrianichthyidae), in Thailand, Indonesia and Japan
    The Natural History Journal of Chulalongkorn University 9(1): 35-68, April 2009 ©2009 by Chulalongkorn University A Revised Taxonomic Account of Ricefish Oryzias (Beloniformes; Adrianichthyidae), in Thailand, Indonesia and Japan WICHIAN MAGTOON 1* AND APHICHART TERMVIDCHAKORN 2 1 Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand 2 Inland Fisheries Research and Development Bureau, Department of Fisheries, Bangkok 10900, Thailand ABSTRACT.– A taxonomic account of Oryzias minutillus, O. mekongensis, O. dancena, and O. javanicus from Thailand, O. celebensis from Indonesia and O. latipes from Japan are redescribed. Six distinct species are recognized. Keys, descriptions and illustrations of the species are presented. Morphological differences between and within all six species are clarified. Twenty-two morphometric characters and ten meristic characters were examined, and 14 morphometric and nine meristic characters were found to differ amongst the six species. Anal-fin ray numbers of O. cellebensis, O. javanicus, O. dancena, O. minutillus, O. latipes and O. mekongensis were 22, 23, 24, 19, 18 and 15, respectively. These differences suggest that the six species may be reproductively isolated from each other. KEY WORDS: Oryzias, Revision, Morphological difference, Cluster analysis four species are known from Thailand, Laos, INTRODUCTION Myanmar, and Vietnam, but eleven species are found from Indonesia and one species in Ricefish of the genus Oryzias belong to Japan (Magtoon, 1986; Roberts, 1998; the family Adrianichthyidae and are widely Kotellat 2001a, b; Parenti and Soeroto, 2004; distributed in South, East and Southeast Asia Parenti, 2008). and southwards to Sulawesi and the Timor Recently, there have been several studies islands (Yamamoto, 1975; Labhart, 1978; published on various aspects of Oryzias Uwa and Parenti, 1988; Chen et al., 1989; biology, for instance on the comparative Uwa, 1991a; Roberts, 1989, 1998).
    [Show full text]
  • The Phylogeny of Ray-Finned Fish (Actinopterygii) As a Case Study Chenhong Li University of Nebraska-Lincoln
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Nebraska, Omaha University of Nebraska at Omaha DigitalCommons@UNO Biology Faculty Publications Department of Biology 2007 A Practical Approach to Phylogenomics: The Phylogeny of Ray-Finned Fish (Actinopterygii) as a Case Study Chenhong Li University of Nebraska-Lincoln Guillermo Orti University of Nebraska-Lincoln Gong Zhang University of Nebraska at Omaha Guoqing Lu University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub Part of the Aquaculture and Fisheries Commons, Biology Commons, and the Genetics and Genomics Commons Recommended Citation Li, Chenhong; Orti, Guillermo; Zhang, Gong; and Lu, Guoqing, "A Practical Approach to Phylogenomics: The hP ylogeny of Ray- Finned Fish (Actinopterygii) as a Case Study" (2007). Biology Faculty Publications. 16. https://digitalcommons.unomaha.edu/biofacpub/16 This Article is brought to you for free and open access by the Department of Biology at DigitalCommons@UNO. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. BMC Evolutionary Biology BioMed Central Methodology article Open Access A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study Chenhong Li*1, Guillermo Ortí1, Gong Zhang2 and Guoqing Lu*3 Address: 1School of Biological Sciences, University
    [Show full text]
  • Oryzias Sakaizumii, a New Ricefish from Northern Japan (Teleostei: Adrianichthyidae)
    289 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 289-299, 7 figs., 1 tab., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Oryzias sakaizumii, a new ricefish from northern Japan (Teleostei: Adrianichthyidae) Toshinobu Asai*, ***, Hiroshi Senou** and Kazumi Hosoya* Oryzias sakaizumii, new species, is described from Japanese freshwaters along the northern coast of the Sea of Japan. It is distinguished from its Japanese congener, O. latipes, by a slightly notched membrane between dorsal- fin rays 5 and 6 in males (greatly notched in O. latipes); dense network of melanophores on the body surface (diffuse melanophores in O. latipes); distinctive irregular black spots on posterior portion of body lateral (absent in O. latipes); and several silvery scales arranged in patches on the posterior portion of the body (few in O. lati pes). Introduction south along the Indo-Australian Archipelago across Wallace’s line to the Indonesian islands of Ricefishes, adrianichthyid fishes of the atheri- Timor and Sulawesi (Kottelat, 1990a-b; Takehana nomorph order Beloniformes, comprise 32 most- et al., 2005). ly small species, including the new species de- Oryzias latipes was originally described as scribed herein (Herder & Chapuis, 2010; Magtoon, Poecilia latipes by Temminck & Schlegel (1846), 2010; Parenti & Hadiaty, 2010). The family Adri- from Siebold’s collection now at the RMNH, the anichthyidae has been classified in three sub- Netherlands. Subsequently, this species was clas- families with four genera – Adrianichthys, Oryzias, sified in the genus Haplochilus by Günter (1866), Xenopoecilus, and Horaichthys – since 1981 (Rosen an incorrect spelling of Aplocheilus, hence Aplo- & Parenti, 1981; Nelson, 2006).
    [Show full text]