Grapes for the Desert: Salt Stress Signaling in Vitis
Total Page:16
File Type:pdf, Size:1020Kb
Grapes for the Desert: Salt Stress Signaling in Vitis Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. Nat.) der Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Ahmed Abd Alkarim Mohammed Ismail aus Damanhour, Ägypten Die vorliegende Dissertation wurde in der Abteilung Molekulare Zellbiologie, am Botanischen Institut des Karlsruher Instituts für Technologie (KIT) im Zeitraum von April 2010 bis Juli 2013 angefertigt. Dekan: Prof. Dr. M. Bastmeyer Referent: Prof. Dr. P. Nick Korreferent: Prof. Dr. H. Puchta Prof. Dr. Natalia Requena Dr. Christoph Basse Tag der mündlichen Prüfung: 19. Juli 2013 Hiermit erkläre ich, dass ich die vorliegende Dissertation, abgesehen von der Benutzung der angegebenen Hilfsmittel, selbstständig verfasst habe. Alle Stellen, die gemäß Wortlaut oder Inhalt aus anderen Arbeiten entnommen sind, wurden durch Angabe der Quelle als Entlehnungen kenntlich gemacht. Diese Dissertation liegt in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vor. Karlsruhe, den 19. Juli 2013 Ahmed Abd Alkarim Mohammed Ismail Table of Contents Table of Contents Abbreviations ........................................................................... IV Summary / Zusammenfassung ............................................... XI 1 Introduction ............................................................................. 1 1.1 What does stress mean for a plant? .............................................. 1 1.2 Environmental stress affects the world population...................... 3 1.3 The salinity stress syndrome ......................................................... 5 1.4 Salinity perception and signal transduction ................................. 7 1.4.1 Calcium signaling ...................................................................................... 8 1.4.2 Extracellular and intracellular pH ............................................................. 11 1.4.3 ROS induction ......................................................................................... 12 1.4.4 Nitric oxide signals .................................................................................. 14 1.4.5 Mitogen-activated protein kinases .......................................................... 15 1.4.6 Cytoskeletal reorganization .................................................................... 16 1.4.7 Roles of Plant hormones ........................................................................ 16 1.4.7.1 JAs biosynthesis and mode of action .................................................. 17 1.4.7.2 ABA biosynthesis and mode of action ................................................. 19 1.4.8 Ubiquitin–26S proteasome system (UPS) .............................................. 22 1.5 Adaptive mechanisms to salinity ................................................. 23 1.5.1 Stomatal closure ..................................................................................... 24 1.5.2 Ionic homeostasis ................................................................................... 25 1.5.2.1 Na+ homeostasis .................................................................................. 26 1.5.2.1.1 Na+ transport ..................................................................................... 26 1.5.2.1.2 Na+ exclusion .................................................................................... 27 1.5.2.1.3 Na+ compartmentalization ................................................................. 28 1.5.2.2 Ca2+ homeostasis ................................................................................ 29 1.5.3 Osmotic adjustment ................................................................................ 30 1.5.4 ROS scavenging ..................................................................................... 32 1.6 Research on salinity tolerance of Vitis ........................................ 33 1.6.1 Why grapevine as model? ...................................................................... 33 1.6.2 Grapevine stilbenes ................................................................................ 35 1.6.2.1 Biosynthesis and metabolism of stilbenes ................................... 36 1.7 Scopes of this study ..................................................................... 38 2 Materials and methods ......................................................... 42 Table of contents 2.1 Cell culture and chemical treatments ..........................................42 2.1.1 Vitis cell culture ........................................................................................ 42 2.1.2 Chemical treatments ................................................................................ 42 2.2 Measurement of packed cell volume (PCV) .............................. 43 2.3 Determination of cell viability .......................................................43 2.4 Measurement of cellular Na+- and Ca2+ content ..........................44 2.5 Measurement and quantitative analysis of extracellular pH ......45 2.6 Detection of ROS species .............................................................45 2.7 Cloning and sequence analysis of JAZ/TIFY genes .................. 46 2.8 Quantification of gene expression .............................................. 47 2.9 Extraction and quantification of stilbenes ...................................49 2.10 Hormones analysis ......................................................................50 2.11 Statistical analysis .......................................................................52 3 Results ................................................................................... 54 3.1 Salinity signalling differs on the physiological level ..................54 3.1.1 Growth resumes under salinity in V. rupestris ......................................... 54 3.1.2 The kinetics of Na+ uptake consist of three phases ................................ 60 3.1.3 Ca2+ influx alters Na+ uptake kinetics ...................................................... 62 3.1.4 Sign reversal in salt-induced changes of Ca2+ content ........................... 63 3.1.5 NaCl-induced extracellular pH differs in both cell lines ........................... 66 3.1.6 NaCl induces ROS species ..................................................................... 68 3.2 Salinity signalling differs on the molecular level ........................69 3.2.1 Isolation and identification of JAZ/TIFY genes ........................................ 69 3.2.2 Impact of NaCl, JA, and aspirin on the expression of JAZ/TIFY genes .. 71 3.2.3 Time courses of salt tolerance genes ...................................................... 73 3.2.4 Phenidone inhibits the induction of JAZ1/TIFY10a genes by salt ........... 74 3.3 Accumulation of phytohormones under salinity in Vitis ...............................................................................................75 3.3.1 Phytohormones accumulate differently during salinity stress ................. 75 3.3.2 Sign reversal in calcium effect on salt-induced hormone levels ............. 77 3.4 Stilbene accumulation in response to salt ..................................80 4 Discussion ............................................................................. 82 4.1 Adaptive response versus cellular damage ................................82 II Table of Contents 4.2 The faster the early response, the better the adaptation ........... 85 4.3 The tighter the control of JA/JA-Il accumulation, the better the adaptation ..................................................................................... 89 4.4 Towards a model for salinity tolerance or sensitivity ................ 92 4.5 Conclusion ..................................................................................... 96 4.6 Outlook ........................................................................................... 96 Acknowledgements ................................................................. 98 Literature cited ....................................................................... 101 Curriculum Vitae .................................................................... 123 Abbreviations Abbreviations 2+ [Ca ]cyt, cytoplasmic calcium 1 O2, singlet oxygen 2, 4-D, 2, 4-dichlorophenoxy-acetic acid ABA, abscisic acid ABI1/2/5, ABA insensitive 1/2/5 ACN, acetonitril AIDS, Acquired Immunodeficiency Syndrome AOC, allene oxide cyclase AOS, allene oxide synthase APX, ascorbate peroxidase ASH, ascorbic acid BRs, brassinosteroids cADPR, cyclic ADP-ribose CaM, calmodulin CAMTAs, camodulin binding transcription activators CAT, catalase CaVs, The voltage-gated Ca2+-selective channels CAXs, High-capacity vacuolar calcium exchangers CCaMKs, Ca2+/CaM dependent protein kinases IV Abbreviations CDPKs, Ca2+-dependent protein kinases CHS, chalcone synthase CK, cytokinin CRD, completely randomized design DEPC, diethylepyrocarbonate DHAR, dehydroascorbate reductase DHE, dihydroethidium DMSO, dimethylsulfoxide ds.m-1, decisiemens per metre ER, endoplasmic reticulum ET, ethylene FAO, Food and Agriculture Organization of the United Nations GB, glycine betaine GdCl3, gadolinium chloride GFP, green fluorescent protein GOPX, guaicol peroxidase G-protein, GTP-binding protein GPX, glutathione peroxidase gpx1, glutathione peroxidase 1 GR, glutathione reductase GSH, glutathione Abbreviations GST, glutathione-S- transferase H+, Hydrogen ion H2O2, hydrogen peroxide H3O, hydronium ion