Kinetic and Structural Studies on Flavin-Dependent Enzymes Involved in Glycine Betaine Biosynthesis and Propionate 3-Nitronate Detoxification

Total Page:16

File Type:pdf, Size:1020Kb

Kinetic and Structural Studies on Flavin-Dependent Enzymes Involved in Glycine Betaine Biosynthesis and Propionate 3-Nitronate Detoxification Georgia State University ScholarWorks @ Georgia State University Chemistry Dissertations Department of Chemistry Spring 5-11-2015 Kinetic and Structural Studies on Flavin-dependent Enzymes involved in Glycine Betaine Biosynthesis and Propionate 3-nitronate Detoxification Francesca Salvi Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_diss Recommended Citation Salvi, Francesca, "Kinetic and Structural Studies on Flavin-dependent Enzymes involved in Glycine Betaine Biosynthesis and Propionate 3-nitronate Detoxification." Dissertation, Georgia State University, 2015. https://scholarworks.gsu.edu/chemistry_diss/106 This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. KINETIC AND STRUCTURAL STUDIES ON FLAVIN-DEPENDENT ENZYMES INVOLVED IN GLYCINE BETAINE BIOSYNTHESIS AND PROPIONATE 3-NITRONATE DETOXIFICATION by FRANCESCA SALVI Under the Direction of Giovanni Gadda, PhD ABSTRACT Flavin-dependent enzymes are characterized by an amazing chemical versatility and play important roles in different cellular pathways. The FAD-containing choline oxidase from Arthrobacter globiformis oxidizes choline to glycine betaine and retains the intermediate betaine aldehyde in the active site. The reduced FAD is oxidized by oxygen. Glycine betaine is an important osmoprotectant accumulated by bacteria, plants, and animals in response to stress conditions. The FMN-containing nitronate monooxygenase detoxifies the deadly toxin propionate 3-nitronate which is produced by plants and fungi as defense mechanism against herbivores. The catalytic mechanism of fungal nitronate monooxygenase (NMO) was characterized, but little is known about bacterial NMOs. In this dissertation the crystal structure of choline oxidase in complex with glycine betaine was solved and the roles of the residue F357 in the oxidative half reaction investigated by combination of steady state kinetics, rapid kinetics, pH, mutagenesis, substrate deuterium and solvent isotope effects, viscosity effects and molecular dynamics simulations. Expression trials of human choline dehydrogenase were carried out and a homology model based on choline oxidase was generated. A bacterial nitronate monooxygenase from Pseudomonas aeruginosa PAO1 Pa-NMO was kinetically and structurally characterized and four conserved motifs were described that identify Class 1 NMO. Two hypothetical NMOs from P. aeruginosa PAO1 and one from Helicobacter pylori not carrying the motifs of Class 1 NMO were cloned and tested for nitronate monooxygenase activity. The crystal structure of choline oxidase in complex with glycine betaine highlighted two different conformations of loop 250-255 at the dimer interface that is proposed to control substrate access to the active site. The side chain of F357 was associated with a slow isomerization in the oxidation of the reduced FAD of choline oxidase. The first crystal structure of an NMO highlighted active site residues for site-directed mutagenesis studies. The gene function prediction for NMO was improved with the four conserved motifs of Pa-NMO. The two hypothetical NMOs from P. aeruginosa PAO1 were shown to possess a different enzymatic activity and to identify two distinct classes of enzymes. The hypothetical NMO from H. pilory did not exhibit NMO activity and contained iron as cofactor. INDEX WORDS: Flavin, Choline oxidase, Nitronate monooxygenase, Propionate 3-nitronate, Choline dehydrogenase, Gene function prediction KINETIC AND STRUCTURAL STUDIES ON FLAVIN-DEPENDENT ENZYMES INVOLVED IN GLYCINE BETAINE BIOSYNTHESIS AND PROPIONATE 3-NITRONATE DETOXIFICATION by FRANCESCA SALVI A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University 2015 Copyright by Francesca Salvi 2015 KINETIC AND STRUCTURAL STUDIES ON FLAVIN-DEPENDENT ENZYMES INVOLVED IN GLYCINE BETAINE BIOSYNTHESIS AND PROPIONATE 3-NITRONATE DETOXIFICATION by FRANCESCA SALVI Committee Chair: Giovanni Gadda Committee: Irene T. Weber Donald Hamelberg Electronic Version Approved: Office of Graduate Studies College of Arts and Sciences Georgia State University May 2015 iv DEDICATION To my husband Roberto Orrù . v ACKNOWLEDGEMENTS I thank my supervisor and my committee members for their support, all my lab members and collaborators for the time spent together. The work of this dissertation was supported by an MBDAF fellowship. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................v LIST OF TABLES ................................................................................................................. xii LIST OF FIGURES ...............................................................................................................xiv LIST OF SCHEMES ..............................................................................................................xix 1 CHAPTER 1: INTRODUCTION ......................................................................................1 1.1 General features of flavin-dependent enzymes ................................................1 1.2 Structural features of selected flavin-dependent enzymes ............................ 10 1.3 Oxidases, monooxygenases, and dehydrogenases .......................................... 17 1.4 Glycine betaine biosynthesis .......................................................................... 32 1.5 Nitronate monooxygenases and the detoxification of propionate 3-nitronate . ......................................................................................................................... 41 1.6 Specific goals ................................................................................................... 52 1.7 References ....................................................................................................... 56 2 CHAPTER II: CRYSTAL STRUCTURE OF CHOLINE OXIDASE IN COMPLEX WITH THE REACTION PRODUCT GLYCINE BETAINE ............................................... 74 2.1 Abstract .......................................................................................................... 74 2.2 Introduction .................................................................................................... 74 2.3 Materials and methods ................................................................................... 77 2.4 Results ............................................................................................................. 79 vii 2.5 Discussion ....................................................................................................... 87 2.6 Conclusion ...................................................................................................... 92 2.7 Acknowledgements ......................................................................................... 93 2.8 References ....................................................................................................... 93 3 CHAPTER III: INVOLVEMENT OF F357 IN AN ISOMERIZATION PARTIALLY RATE LIMITING FOR FLAVIN OXIDATION IN CHOLINE OXIDASE........................ 98 3.1 Abstract .......................................................................................................... 98 3.2 Introduction .................................................................................................... 99 3.3 Materials and methods ................................................................................. 102 3.4 Results ........................................................................................................... 107 3.5 Discussion ..................................................................................................... 121 3.6 Conclusion .................................................................................................... 127 3.7 References ..................................................................................................... 129 4 CHAPTER IV: HUMAN CHOLINE DEHYDROGENASE: MEDICAL PROMISES AND BIOCHEMICAL CHALLENGES .............................................................................. 131 4.1 Abbreviations ............................................................................................... 131 4.2 Abstract ........................................................................................................ 131 4.3 Introduction .................................................................................................. 132 4.4 Physiological roles of human CHD .............................................................. 135 4.5 Medical relevance of CHD ........................................................................... 137 viii 4.6 Subcellular localization of mammalian CHD .............................................. 140 4.7 Glucose-Methanol-Choline enzyme oxidoreductase superfamily ............... 141 4.8 Purification of CHD ..................................................................................... 143 4.9 Biochemical properties of CHD ................................................................... 145 4.10 Homology model of human CHD ................................................................. 148 4.11 Comparison of CHD
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Neurotransmitter Resource Guide
    NEUROTRANSMITTER RESOURCE GUIDE Science + Insight doctorsdata.com Doctor’s Data, Inc. Neurotransmitter RESOURCE GUIDE Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Analyte Considerations Phenylethylamine (B-phenylethylamine or PEA) ................................................................................................. 1 Tyrosine .......................................................................................................................................................................................... 3 Tyramine ........................................................................................................................................................................................4 Dopamine .....................................................................................................................................................................................6 3, 4-Dihydroxyphenylacetic Acid (DOPAC) ............................................................................................................... 7 3-Methoxytyramine (3-MT) ............................................................................................................................................... 9 Norepinephrine ........................................................................................................................................................................
    [Show full text]
  • Biochemical and Biophysical Characterisation of Anopheles Gambiae Nadph-Cytochrome P450 Reductase
    BIOCHEMICAL AND BIOPHYSICAL CHARACTERISATION OF ANOPHELES GAMBIAE NADPH-CYTOCHROME P450 REDUCTASE Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by PHILIP WIDDOWSON SEPTEMBER 2010 0 ACKNOWLEDGEMENTS There are a number of people whom I would like to thank for their support during the completion of this thesis. Firstly, I would like to thank my family; Mum, Louise and Chris for putting up with me over the years and for their love, patience and, in particular to Chris, technical support throughout– I could not have coped on my own without all your help. I would like to extend special thanks to Professor Lu-Yun Lian for her constant supervision throughout my Ph.D. She always kept me on the right path and was always available for support and advice which was especially useful when things were not going to plan. Thank you for all your help. In addition to Professor Lian I would like to thank all the members of the Structural Biology Group and everybody, past and present, whom I worked alongside in Lab C over the past four years. I would also like to thank the University of Liverpool for the funding that made all this possible. I would like to make particular mention to a few people in the School of Biological Sciences who were of particular help during my time at university. Dr. Mark Wilkinson was a constant support, not only during my Ph.D, but as my undergraduate tutor and honours project supervisor. Dr. Dan Rigden and Dr.
    [Show full text]
  • Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions
    PsychoTropical Commentaries (2016) 1:1 – 90 © Fernwell Publications Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions PK Gillman PsychoTropical Research, Bucasia, Queensland, Australia Abstract This comprehensive monograph surveys original data on the subject of both dietary tyramine and drug interactions relevant to Monoamine Oxidase Inhibitors (MAOIs), about which there is much outdated, incorrect and incomplete information in the medical literature and elsewhere. Fewer foods than previously supposed have problematically high tyramine levels because international food hygiene regulations have improved both production and handling. Cheese is the only food that has, in the past, been associated with documented fatalities from hypertension, and now almost all ‘supermarket’ cheeses are perfectly safe in healthy-sized portions. The variability of sensitivity to tyramine between individuals, and the sometimes unpredictable amount of tyramine content in foods, means a little knowledge and care are still advised. The interactions between MAOIs and other drugs are now well understood, are quite straightforward, and are briefly summarized here (by a recognised expert). MAOIs have no apparently clinically relevant pharmaco-kinetic interactions, and the only significant pharmaco-dynamic interaction, other than the ‘cheese reaction’ (caused by indirect sympatho-mimetic activity [ISA], is serotonin toxicity ST (aka serotonin syndrome) which is now well defined and straightforward to avoid by not co-administering any drug with serotonin re-uptake inhibitor (SRI) potency. There are no therapeutically used drugs, other than SRIs, that are capable of inducing serious ST with MAOIs. Anaesthesia is not contra- indicated if a patient is taking MAOIs. Most of the previously held concerns about MAOIs turn out to be mythical: they are either incorrect, or over-rated in importance, or stem from apprehensions born out of insufficient knowledge.
    [Show full text]
  • Single-Molecule Spectroscopy Reveals How Calmodulin Activates NO Synthase by Controlling Its Conformational Fluctuation Dynamics
    Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics Yufan Hea,1, Mohammad Mahfuzul Haqueb,1, Dennis J. Stuehrb,2, and H. Peter Lua,2 aCenter for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403; and bDepartment of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Edited by Louis J. Ignarro, University of California, Los Angeles School of Medicine, Beverly Hills, CA, and approved July 31, 2015 (received for review May 5, 2015) Mechanisms that regulate the nitric oxide synthase enzymes (NOS) this model, the FMN domain is suggested to be highly dynamic are of interest in biology and medicine. Although NOS catalysis and flexible due to a connecting hinge that allows it to alternate relies on domain motions, and is activated by calmodulin binding, between its electron-accepting (FAD→FMN) or closed confor- the relationships are unclear. We used single-molecule fluores- mation and electron-donating (FMN→heme) or open conforma- cence resonance energy transfer (FRET) spectroscopy to elucidate tion (Fig. 1 A and B)(28,30–36). In the electron-accepting closed the conformational states distribution and associated conforma- conformation, the FMN domain interacts with the NADPH/FAD tional fluctuation dynamics of the two electron transfer domains domain (FNR domain) to receive electrons, whereas in the elec- in a FRET dye-labeled neuronal NOS reductase domain, and to tron donating open conformation the FMN domain has moved understand how calmodulin affects the dynamics to regulate away to expose the bound FMN cofactor so that it may transfer catalysis.
    [Show full text]
  • Grapes for the Desert: Salt Stress Signaling in Vitis
    Grapes for the Desert: Salt Stress Signaling in Vitis Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. Nat.) der Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Ahmed Abd Alkarim Mohammed Ismail aus Damanhour, Ägypten Die vorliegende Dissertation wurde in der Abteilung Molekulare Zellbiologie, am Botanischen Institut des Karlsruher Instituts für Technologie (KIT) im Zeitraum von April 2010 bis Juli 2013 angefertigt. Dekan: Prof. Dr. M. Bastmeyer Referent: Prof. Dr. P. Nick Korreferent: Prof. Dr. H. Puchta Prof. Dr. Natalia Requena Dr. Christoph Basse Tag der mündlichen Prüfung: 19. Juli 2013 Hiermit erkläre ich, dass ich die vorliegende Dissertation, abgesehen von der Benutzung der angegebenen Hilfsmittel, selbstständig verfasst habe. Alle Stellen, die gemäß Wortlaut oder Inhalt aus anderen Arbeiten entnommen sind, wurden durch Angabe der Quelle als Entlehnungen kenntlich gemacht. Diese Dissertation liegt in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vor. Karlsruhe, den 19. Juli 2013 Ahmed Abd Alkarim Mohammed Ismail Table of Contents Table of Contents Abbreviations ........................................................................... IV Summary / Zusammenfassung ............................................... XI 1 Introduction ............................................................................. 1 1.1 What does stress mean for a plant? .............................................. 1 1.2 Environmental
    [Show full text]
  • Carnitine Metabolism to Trimethylamine by an Unusual Rieske-Type Oxygenase from Human Microbiota
    Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota Yijun Zhua,1, Eleanor Jamesona,1, Marialuisa Crosattib,1, Hendrik Schäfera, Kumar Rajakumarb, Timothy D. H. Buggc, and Yin Chena,2 aSchool of Life Sciences and cDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and bDepartment of Infection, Immunity, and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved January 29, 2014 (received for review September 5, 2013) Dietary intake of L-carnitine can promote cardiovascular diseases in (14, 15). Assigning functions encoded in the human microbiome humans through microbial production of trimethylamine (TMA) using existing databases can be problematic. For example, the and its subsequent oxidation to trimethylamine N-oxide by hepatic Pfam protein database currently contains over 25% of protein flavin-containing monooxygenases. Although our microbiota are re- families with no assigned functions (release 26.0) (19). sponsible for TMA formation from carnitine, the underpinning mo- Lack of functional characterization of key microbial functions lecular and biochemical mechanisms remain unclear. In this study, in our microbiota is exemplified by very recent studies on car- using bioinformatics approaches, we first identified a two-component diovascular diseases (20–23). These studies have shown that the Rieske-type oxygenase/reductase (CntAB) and associated gene human microbiota is responsible for the production of trime- cluster proposed to be involved in carnitine metabolism in repre- thylamine N-oxide (TMAO), which is believed to promote ath- sentative genomes of the human microbiota. CntA belongs to a erogenesis through its interaction with macrophages and lipid group of previously uncharacterized Rieske-type proteins and has metabolism (20–23).
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Corning® Supersomes™ Ultra Human Aldehyde Oxidase
    Corning® Supersomes™ Ultra Human Aldehyde Oxidase Aldehyde Oxidase (AO) is a cytosolic enzyme that plays an important role in non-CYP mediated drug metabolism and pharmacokinetics. AO has garnered significant attention in the pharmaceutical industry due to multiple drug failures during clinical trials that were associated with the AO pathway and an increase in the number of aromatic aza-heterocycle moieties found in drug leads that have been identified as substrates for AO. Traditionally, recombinant AO (rAO) is expressed in bacteria. However, this approach has disadvantages such as different protein post-translation modifications that lead to different function as compared to mammalian cells. Corning has developed Corning Supersomes Ultra Aldehyde Oxidase, a recombinant human AO enzyme utilizing a mammalian cell-based expression system to address these issues. This product will enable early assessment of the liability of AO for drug metabolism and clearance. Corning Supersomes Ultra Human Aldehyde Oxidase has been over-expressed in HEK-293 cells and exhibited a significantly higher activity as compared to AO expressed in E. coli. Time- dependent enzyme kinetics, using known substrates and inhibitors, between the rAO and the native form found in human liver cytosol produced a good correlation. Features and Benefits of Corning Supersomes Ultra Aldehyde Oxidase Mammalian cell expression system Corning Supersomes Ultra Human Aldehyde Oxidase Performance Corning Supersomes Ultra AO have been engineered in HEK-293 mammalian cells, thereby eliminating the biosafety concerns Activity Comparison Utilizing Probe Substrate (Zaleplon, 250 µM) associated with baculovirus. Stable and reliable in vitro tool 25 Corning Supersomes Ultra AO are a stable and reliable in vitro tool for the study of AO-mediated metabolism, which provides a 20 quantitative contribution of drug clearance.
    [Show full text]
  • Precursor of Ether Phospholipids Is Synthesized by a Flavoenzyme
    Precursor of ether phospholipids is synthesized by a flavoenzyme through covalent catalysis Simone Nencia, Valentina Pianoa, Sara Rosatib, Alessandro Alivertic, Vittorio Pandinic, Marco W. Fraaijed, Albert J. R. Heckb, Dale E. Edmondsone, and Andrea Mattevia,1 aDepartment of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; bBiomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; cDepartment of Biosciences, University of Milan, 20133 Milan, Italy; dMolecular Enzymology Group, University of Groningen, 9747 AG Groningen, The Netherlands; and eDepartment of Biochemistry, Emory University, Atlanta, GA 30322 Edited by Emil F. Pai, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, ON, Canada, and accepted by the Editorial Board October 5, 2012 (received for review August 31, 2012) The precursor of the essential ether phospholipids is synthesized ADPS enzymes, whereas type 1 arises from mutations in PEX7, by a peroxisomal enzyme that uses a flavin cofactor to catalyze the protein mediating the peroxisomal import of ADPS (9–12). a reaction that does not alter the redox state of the substrates. Here we report a structural and mechanistic investigation of The enzyme crystal structure reveals a V-shaped active site with mammalian ADPS in WT and mutated forms. The biochemical a narrow constriction in front of the prosthetic group. Mutations hallmark of the enzyme is that it uses a redox cofactor, flavin causing inborn ether phospholipid deficiency, a very severe adenine dinucleotide (FAD), to catalyze a reaction that does not genetic disease, target residues that are part of the catalytic alter the redox state of the substrates (10, 13).
    [Show full text]
  • Discovery and Protein Engineering of Baeyer-Villiger Monooxygenases
    Discovery and Protein Engineering of Baeyer-Villiger monooxygenases Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Andy Beier geboren am 11.10.1988 in Parchim Greifswald, den 02.08.2017 I Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Marko Mihovilovic Tag der Promotion: 24.10.2017 II We need to learn to want what we have, not to have what we want, in order to get stable and steady happiness. - The Dalai Lama - III List of abbreviations % Percent MPS Methyl phenyl sulfide % (v/v) % volume per volume MPSO Methyl phenyl sulfoxide % (w/v) % weight per volume MPSO2 Methyl phenyl sulfone °C Degrees Celsius MTS Methyl p-tolyl sulfide µM µmol/L MTSO Methyl p-tolyl sulfoxide aa Amino acids MTSO2 Methyl p-tolyl sulfone + AGE Agarose gel electrophoresis NAD Nicotinamide adenine dinucleotide, oxidized aq. dest. Distilled water NADH Nicotinamide adenine dinucleotide, reduced + BLAST Basic Local Alignment Search NADP Nicotinamide adenine dinucleotide Tool phosphate, oxidized bp Base pair(s) NADPH Nicotinamide adenine dinucleotide phosphate, reduced BVMO Baeyer-Villiger monooxyge- OD600 Optical density at 600 nm nase CHMO Cyclohexanone monooxyge- PAGE Polyacrylamide gel electrophoresis nase Da Dalton PAMO Phenylacetone monooxygenase DMF Dimethyl formamide PCR Polymerase chain reaction DMSO Dimethyl sulfoxide PDB Protein Data Bank DMSO2 Dimethyl sulfone rpm Revolutions per minute DNA Desoxyribonucleic acid rv Reverse dNTP Desoxynucleoside triphosphate SDS Sodium dodecyl sulfate E. coli Escherichia coli SOC Super Optimal broth with Catabolite repression ee Enantiomeric excess TAE TRIS-Acetate-EDTA FAD Flavin adenine dinucleotide TB Terrific broth Fig.
    [Show full text]
  • 2010 Physical Biosciences Research Meeting
    2010 Physical Biosciences Research Meeting Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division 2010 Physical Biosciences Research Meeting Program and Abstracts Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy i Cover art is taken from the public domain and can be found at: http://commons.wikimedia.org/wiki/File:Blue_crab_on_market_in_Piraeus_-_Callinectes_sapidus_Rathbun_20020819- 317.jpg This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are, unless specifically labeled otherwise, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ii Foreword This volume provides a record of the 2nd biennial meeting of the Principal Investigators (PIs) funded by the Physical Biosciences program, and is sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences (BES) in the U.S. Department of Energy (DOE). Within DOE-BES there are two programs that fund basic research in energy-relevant biological sciences, Physical Biosciences and Photosynthetic Systems. These two Biosciences programs, along with a strong program in Solar Photochemistry, comprise the current Photo- and Bio- Chemistry Team. This meeting specifically brings together under one roof all of the PIs funded by the Physical Biosciences program, along with Program Managers and staff not only from DOE-BES, but also other offices within DOE, the national labs, and even other federal funding agencies.
    [Show full text]