Data and Performances of Selected Aircraft and Rotorcraft Antonio Filippone*

Total Page:16

File Type:pdf, Size:1020Kb

Data and Performances of Selected Aircraft and Rotorcraft Antonio Filippone* Progress in Aerospace Sciences 36 (2000) 629}654 Data and performances of selected aircraft and rotorcraft Antonio Filippone* Department of Energy Engineering, Technical University of Denmark, Building 404, DK-2800 Lyngby, Denmark Abstract The purpose of this article is to provide a synthetic and comparative view of selected aircraft and rotorcraft (nearly 300 of them) from past and present. We report geometric characteristics of wings (wing span, areas, aspect-ratios, sweep angles, dihedral/anhedral angles, thickness ratios at root and tips, taper ratios) and rotor blades (type of rotor, diameter, number of blades, solidity, rpm, tip Mach numbers); aerodynamic data (drag coe$cients at zero lift, cruise and maximum absolute glide ratio); performances (wing and disk loadings, maximum absolute Mach number, cruise Mach number, service ceiling, rate of climb, centrifugal acceleration limits, maximum take-o! weight, maximum payload, thrust-to- weight ratios). There are additional data on wing types, high-lift devices, noise levels at take-o! and landing. The data are presented on tables for each aircraft class. A graphic analysis o!ers a comparative look at all types of data. Accuracy levels are provided wherever available. ( 2000 Elsevier Science Ltd. All rights reserved. Contents 1. Introduction. .................................... 631 2. Reliability of the data ............................................ 632 3. Aerodynamic data .............................................. 632 3.1. Drag coe$cients . .......................................... 633 3.2. Lift}drag ratio. ............................................. 635 3.3. Cruise Lift and high-lift performances . ............................. 636 4. Selected performance data . ....................................... 637 4.1. Mach number . ............................................ 637 4.2. Normal acceleration limits . ........................ 637 4.3. Rate of climb . ............................................. 638 4.4. Hover ceiling . ........................................... 638 4.5. Maximum take-o! weight and other weights............................ 638 4.6. Wing loading . ............................................ 638 4.7. Noise levels . ............................................. 638 5. Geometrical data . .............................................. 639 5.1. Wing geometry . ............................................ 639 5.2. Wing span . .............................................. 640 5.3. Aspect-ratios and shape parameters . ............................... 640 * Tel.: #45-45-25-43-24; fax: #45-45-93-06-93. E-mail address: [email protected] (A. Filippone). 0376-0421/00/$- see front matter ( 2000 Elsevier Science Ltd. All rights reserved. PII: S 0 3 7 6 - 0 4 2 1 ( 0 0 ) 0 0 0 1 1 - 7 630 A. Filippone / Progress in Aerospace Sciences 36 (2000) 629}654 Nomenclature Subscripts/superscripts A wing area; rotor disk area (m ) []# cruise conditions AR wing geometrical aspect-ratio [] root b wing span (m) [] tip B main rotor'snumberofblades(rotorcraft) [] at zero lift c wing/blade chord (m) [] viscous C" drag coe$cient C* lift coe$cient Aircraft wing specixcations C* ! maximum lift coe$cient CD skin friction coe$cient BWB blended wing body d rotor diameter (m) FSW forward swept wing d!* tail rotor diameter (m) SBW swept back wing d equivalent wing span (m) VSW variable sweep (usually discrete posi- D drag force (N) tions) e wing e$ciency factor D conventional delta wing E maximum cargo range D double delta wing g> maximum normal acceleration, g-limit h hovering ceiling, out of ground e!ect (m) Rotorcraft specixcations k reduced frequency l aircraft length, or length scale (m) AT attack, anti-tank, anti-submarine, ad- ¸ lift force (N) vanced military vehicle LE leading edge line C cargo, crane, heavy lift transport (usually M Mach number military vehicle) n normal load factor GE civil/military general purpose vehicle " P* max power loading MTOW/T (kg/kN (patrol, rescue, transport) for jets; kg/kW for propellers) LC light commercial vehicle (for a few pas- P speci"c excess power (m/s) sengers and limited freight) QC quarter chord line UT military utility vehicle (troops, freight, \ q dynamic pressure (kg ms ) mateH riel, support operations) R aircraft range (km) TW twin or tandem rotor, utility vehicle with Re Reynolds number two rotor shafts R! rate of climb (m/min) TR tilt rotor vehicle t/c wing thickness ratio ¹ take-o! thrust rating (kN), International Other symbols and abbreviations Standard Atmosphere (ISA) u aircraft's speed (km/h, or m/s) AoA angle of attack ; aircraft's stalling velocity with #aps EPNdB e!ective perceived noise, measured in dB down (km/h) LERX leading-edge root extension " =/A max wing loading MTOW/A (kg/m ); MTOW maximum take-o! weight (kg) also equivalent disk loading OWE operating empty weight (kg) Z service ceiling in sustained horizontal PAY payload (kg) #ight (m); vertical coordinate P/O PAY/OWE a angle of attack (deg) P/W PAY/MTOW b ' ( dihedral angle, if 0; anhedral if 0 rpm rounds-per-minute (rotor speeds) (deg) V/STOL vertical/short take-o! and landing j " taper ratio c/c SSF single-slotted TE #ap K wing sweep around LE or QC, as speci- DSF double-slotted TE #ap "ed (deg) TSF triple-slotted TE #ap c angle of climb (deg) SL single LE slat k advance ratio SLK LE Kruger slat o air density (kg/m ) USB upper surface blowing p rotor solidity VT vectored thrust HQ maximum sustained rate of turn (deg/s) Aircraft designation Aircraft and rotorcraft are identixed by company name (Antonov, Lockheed)#designation (An-124, F-117)#version (A, B); nickname (Ruslan, Raptor) is rarely used. In the graphics the company names are added only occasionally. Refer to the data base [1] for full information and data that for clarity are not labelled. A. Filippone / Progress in Aerospace Sciences 36 (2000) 629}654 631 5.4. Wing sweep . .............................. 640 5.5. Airfoil sections. ............................................ 641 5.6. Other geometrical characteristics . .............................. 642 6. Comparative analysis . ..................................... 642 6.1. Helicopters. .............................................. 642 6.2. Cargo aircraft . ........................... 646 6.3. Fighter jets. ....................................... 649 6.4. Subsonic commercial jets . ........................ 651 7. Perspectives and conclusions . ....................................... 652 References. .................................................. 653 1. Introduction provides useful information for aerospace sciences. The presentation will stick to data and performances related The conceptual design of an aircraft and its aerody- to aerodynamics and propulsion systems of full-scale namic analysis may require a fair amount of independent vehicles. Structures, costs and commercial issues are not parameters. Quantities as essential as the wing aspect- discussed. Out of the discussion are also all those para- ratio have di!erent optima, depending on whether the meters that are di$cult to de"ne with any certainty, or "gure of merit is the acquisition cost, the direct operating are not readily available in the unclassi"ed literature, or costs, the take-o! gross weight, or the block fuel [2]. cannot be presented concisely. Data in this class include Engineers have long recognized that there is no simple all the unsteady aerodynamics characteristics, the aero- solution, and in recent years new multi-disciplinary dynamic derivatives, passenger details and most ranges methods have been devised to treat design problems in and fuel capacity. Seckel [5] in his book on dynamics and complex search spaces. Even then, "rst guess solutions stability reports a few interesting examples of these char- may be required, and often operation points falling o! acteristics. the known space are indication of something new. The vehicles included in the analysis are organized It is estimated it took C. Lindbergh and his team at according to class. This selection provides maximum Ryan Aircraft about 46 days to design and build the order and well consistent trends. In some cases compari- successful Spirit of St. Louis (1927), and K. Tank one year sons are performed across the whole spectrum of aircraft from conception to "rst #ight of his transatlantic Focke and rotorcraft. There are several ways of reading the Wulf Fw-200 (1935). To this day records are broken in data. One is the historical trend. This requires a selection the opposite sense: the B2-A required 24,000 h of wind of design cases to be plotted against a time line (techno- tunnel testing, 44,000 h of avionics testing, 6000 h of con- logy trends). Another option is to compare many vehicles trol systems testing, and 4000 h of #ight testing, for in the same class, to discover trends dictated by old or a grand total of approximately 78,000 h [3]. At the same new design considerations, and experimental work time, some aircraft are known to consist of one million (iso-technology). The curves "t are either lines or power parts, for example Lockheed-Martin F-22: `Designing curves. The best "t is no minor issue, but e!orts have anything that complex takes more than dazzling engin- been done to select the curves that best represent the raw eeringa [4]. data. The increasing level of technology has led to ever Some aircraft classes are de"ned in a very narrow increasing sophistication, while the concomitant increase design space (for example twin turboprops for regional in analytical, computational and simulation
Recommended publications
  • Jay Carter, Founder &
    CARTER AVIATION TECHNOLOGIES An Aerospace Research & Development Company Jay Carter, Founder & CEO CAFE Electric Aircraft Symposium www.CarterCopters.com July 23rd, 2017 Wichita©2015 CARTER AVIATIONFalls, TECHNOLOGIES,Texas LLC SR/C is a trademark of Carter Aviation Technologies, LLC1 A History of Innovation Built first gyros while still in college with father’s guidance Led to job with Bell Research & Development Steam car built by Jay and his father First car to meet original 1977 emission standards Could make a cold startup & then drive away in less than 30 seconds Founded Carter Wind Energy in 1976 Installed wind turbines from Hawaii to United Kingdom to 300 miles north of the Arctic Circle One of only two U.S. manufacturers to survive the mid ‘80s industry decline ©2015 CARTER AVIATION TECHNOLOGIES, LLC 2 SR/C™ Technology Progression 2013-2014 DARPA TERN Won contract over 5 majors 2009 License Agreement with AAI, Multiple Military Concepts 2011 2017 2nd Gen First Flight Find a Manufacturing Later Demonstrated Partner and Begin 2005 L/D of 12+ Commercial Development 1998 1 st Gen 1st Gen L/D of 7.0 First flight 1994 - 1997 Analysis & Component Testing 22 years, 22 patents + 5 pending 1994 Company 11 key technical challenges overcome founded Proven technology with real flight test ©2015 CARTER AVIATION TECHNOLOGIES, LLC 3 SR/C™ Technology Progression Quiet Jump Takeoff & Flyover at 600 ft agl Video also available on YouTube: https://www.youtube.com/watch?v=_VxOC7xtfRM ©2015 CARTER AVIATION TECHNOLOGIES, LLC 4 SR/C vs. Fixed Wing • SR/C rotor very low drag by being slowed Profile HP vs.
    [Show full text]
  • United Nations Peacekeeping Missions Military Aviation Unit Manual Second Edition April 2021
    UN Military Aviation Unit Manual United Nations Peacekeeping Missions Military Aviation Unit Manual Second Edition April 2021 Second Edition 2019 DEPARTMENT OF PEACE OPERATIONS DEPARTMENT OF OPERATIONAL SUPPORT UN Military Aviation Unit Manual Produced by: Office of Military Affairs, Department of Peace Operations UN Secretariat One UN Plaza, New York, NY 10017 Tel. 917-367-2487 Approved by: Jean-Pierre Lacroix, Under-Secretary-General for Peace Operations Department of Peace Operations (DPO). Atul Khare Under-Secretary-General for Operational Support Department of Operational Support (DOS) April 2021. Contact: PDT/OMA/DPO Review date: 30/ 04 / 2026 Reference number: 2021.04 Printed at the UN, New York © UN 2021. This publication enjoys copyright under Protocol 2 of the Universal Copyright Convention. Nevertheless, governmental authorities or Member States may freely photocopy any part of this publication for exclusive use within their training institutes. However, no portion of this publication may be reproduced for sale or mass publication without the express consent, in writing, of the Office of Military Affairs, UN Department of Peace Operations. ii UN Military Aviation Unit Manual Foreword We are delighted to introduce the United Nations Peacekeeping Missions Military Aviation Unit Manual, an essential guide for commanders and staff deployed in peacekeeping operations, and an important reference for Member States and the staff at United Nations Headquarters. For several decades, United Nations peacekeeping has evolved significantly in its complexity. The spectrum of multi-dimensional UN peacekeeping operations includes challenging tasks such as restoring state authority, protecting civilians and disarming, demobilizing and reintegrating ex-combatants. In today’s context, peacekeeping missions are deploying into environments where they can expect to confront asymmetric threats and contend with armed groups over large swaths of territory.
    [Show full text]
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • Business & Commercial Aviation
    BUSINESS & COMMERCIAL AVIATION LEONARDO AW609 PERFORMANCE PLATEAUS OCEANIC APRIL 2020 $10.00 AviationWeek.com/BCA Business & Commercial Aviation AIRCRAFT UPDATE Leonardo AW609 Bringing tiltrotor technology to civil aviation FUEL PLANNING ALSO IN THIS ISSUE Part 91 Department Inspections Is It Airworthy? Oceanic Fuel Planning Who Says It’s Ready? APRIL 2020 VOL. 116 NO. 4 Performance Plateaus Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • General Aviation Aircraft Propulsion: Power and Energy Requirements
    UNCLASSIFIED General Aviation Aircraft Propulsion: Power and Energy Requirements • Tim Watkins • BEng MRAeS MSFTE • Instructor and Flight Test Engineer • QinetiQ – Empire Test Pilots’ School • Boscombe Down QINETIQ/EMEA/EO/CP191341 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Contents • Benefits of electrifying GA aircraft propulsion • A review of the underlying physics • GA Aircraft power requirements • A brief look at electrifying different GA aircraft types • Relationship between battery specific energy and range • Conclusions 2 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Benefits of electrifying GA aircraft propulsion • Environmental: – Greatly reduced aircraft emissions at the point of use – Reduced use of fossil fuels – Reduced noise • Cost: – Electric aircraft are forecast to be much cheaper to operate – Even with increased acquisition cost (due to batteries), whole-life cost will be reduced dramatically – Large reduction in light aircraft operating costs (e.g. for pilot training) – Potential to re-invigorate the GA sector • Opportunities: – Makes highly distributed propulsion possible – Makes hybrid propulsion possible – Key to new designs for emerging urban air mobility and eVTOL sectors 3 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Energy conversion efficiency Brushless electric motor and controller: • Conversion efficiency ~ 95% for motor, ~ 90% for controller • Variable pitch propeller efficiency
    [Show full text]
  • Design, Modelling and Control of a Space UAV for Mars Exploration
    Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Space Engineering, master's level (120 credits) 2021 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Department of Computer Science, Electrical and Space Engineering Faculty of Space Science and Technology Luleå University of Technology Submitted in partial satisfaction of the requirements for the Degree of Masters in Space Science and Technology Supervisor Dr George Nikolakopoulos January 2021 Acknowledgements I would like to take this opportunity to thank my thesis supervisor Dr. George Nikolakopoulos who has laid a concrete foundation for me to learn and apply the concepts of robotics and automation for this project. I would be forever grateful to George Nikolakopoulos for believing in me and for supporting me in making this master thesis a success through tough times. I am thankful to him for putting me in loop with different personnel from the robotics group of LTU to get guidance on various topics. I would like to thank Christoforos Kanellakis for guiding me in the control part of this thesis. I would also like to thank Björn Lindquist for providing me with additional research material and for explaining low level and high level controllers for UAV. I am grateful to have been a part of the robotics group at Luleå University of Technology and I thank the members of the robotics group for their time, support and considerations for my master thesis. I would also like to thank Professor Lars-Göran Westerberg from LTU for his guidance in develop- ment of fluid simulations for this master thesis project.
    [Show full text]
  • 5.2 Drag Reduction Through Higher Wing Loading David L. Kohlman
    5.2 Drag Reduction Through Higher Wing Loading David L. Kohlman University of Kansas |ntroduction The wing typically accounts for almost half of the wetted area of today's production light airplanes and approximately one-third of the total zero-lift or parasite drag. Thus the wing should be a primary focal point of any attempts to reduce drag of light aircraft with the most obvious configuration change being a reduction in wing area. Other possibilities involve changes in thickness, planform, and airfoil section. This paper will briefly discuss the effects of reducing wing area of typical light airplanes, constraints involved, and related configuration changes which may be necessary. Constraints and Benefits The wing area of current light airplanes is determined primarily by stall speed and/or climb performance requirements. Table I summarizes the resulting wing loading for a representative spectrum of single-engine airplanes. The maximum lift coefficient with full flaps, a constraint on wing size, is also listed. Note that wing loading (at maximum gross weight) ranges between about 10 and 20 psf, with most 4-place models averaging between 13 and 17. Maximum lift coefficient with full flaps ranges from 1.49 to 2.15. Clearly if CLmax can be increased, a corresponding decrease in wing area can be permitted with no change in stall speed. If total drag is not increased at climb speed, the change in wing area will not adversely affect climb performance either and cruise drag will be reduced. Though not related to drag, it is worthy of comment that the range of wing loading in Table I tends to produce a rather uncomfortable ride in turbulent air, as every light-plane pilot is well aware.
    [Show full text]
  • Business Opportunities in Aircraft Cabin Conversion and Refurbishing
    Business Opportunities in Aircraft Cabin Conversion and Refurbishing Mihaela F. Niţă1 and Dieter Scholz2 Hamburg University of Applied Sciences, Berliner Tor 9, 20099 Hamburg, Germany This paper identifies several meaningful business opportunity cases in the area of aircraft cabin conversion and refurbishing and predicts the market volume and the world distribution for each of them: 1.) international cabins, 2.) domestic cabins, 3.) aircraft on operating lease, 4.) freighter conversions and 5.) VIP completions. This implies the determination of cabin modification/conversion scenarios, along with their duration and frequency. Factors driving the cabin conversion and refurbishing are identified. Several aircraft databases, containing the current world feet as well as the forecasted fleet for the next years, are analyzed. The results are obtained by creating a program able to read and analyze the gathered data. It is shown that about 38000 cabin redesigns will be undertaken within the next 20 years. About 2500 conversions from jetliners into freighters and 25000 cabin modifications at VIP standards will emerge on the market. The North American and European markets will keep providing good business opportunities in this area. The Asian market, however, is growing fast, and its very strong influence on demand puts it in the front rank for the next 20 years. Nomenclature agescenario_limit = aircraft age for which the refurbishing is no longer planned by the operator. dateaircraft_delivery = date of the aircraft first delivery datemodification
    [Show full text]
  • Adventures in Low Disk Loading VTOL Design
    NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California Click here: Press F1 key (Windows) or Help key (Mac) for help September 2018 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or co- helping NASA maintain this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of • TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing • TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services.
    [Show full text]
  • Drag Bookkeeping
    Drag Drag Bookkeeping Drag may be divided into components in several ways: To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag To emphasize the physical origins of the drag components: Drag = Skin Friction Drag + Viscous Pressure Drag + Inviscid (Vortex) Drag + Wave Drag The latter decomposition is stressed in these notes. There is sometimes some confusion in the terminology since several effects contribute to each of these terms. The definitions used here are as follows: Compressibility drag is the increment in drag associated with increases in Mach number from some reference condition. Generally, the reference condition is taken to be M = 0.5 since the effects of compressibility are known to be small here at typical conditions. Thus, compressibility drag contains a component at zero-lift and a lift-dependent component but includes only the increments due to Mach number (CL and Re are assumed to be constant.) Zero-lift drag is the drag at M=0.5 and CL = 0. It consists of several components, discussed on the following pages. These include viscous skin friction, vortex drag due to twist, added drag due to fuselage upsweep, control surface gaps, nacelle base drag, and miscellaneous items. The Lift-Dependent drag, sometimes called induced drag, includes the usual lift- dependent vortex drag together with lift-dependent components of skin friction and pressure drag. For the second method: Skin Friction drag arises from the shearing stresses at the surface of a body due to viscosity. It accounts for most of the drag of a transport aircraft in cruise.
    [Show full text]
  • Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
    NASA/TM-2000-210646 Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics Dennis M. Bushnell Langley Research Center, Hampton, Virginia December 2000 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co-sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA's scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. TECHNICAL TRANSLATION. English- The Program Office is also NASA's institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following Specialized services that complement the STI report types: Program Office's diverse offerings include creating custom thesauri, building customized TECHNICAL PUBLICATION. Reports of databases, organizing and publishing research completed research or a major significant results ... even providing videos. phase of research that present the results of NASA programs and include extensive For more information about the NASA STI data or theoretical analysis.
    [Show full text]
  • Design of a Light Business Jet Family David C
    Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends.
    [Show full text]