General Aviation Aircraft Propulsion: Power and Energy Requirements

Total Page:16

File Type:pdf, Size:1020Kb

General Aviation Aircraft Propulsion: Power and Energy Requirements UNCLASSIFIED General Aviation Aircraft Propulsion: Power and Energy Requirements • Tim Watkins • BEng MRAeS MSFTE • Instructor and Flight Test Engineer • QinetiQ – Empire Test Pilots’ School • Boscombe Down QINETIQ/EMEA/EO/CP191341 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Contents • Benefits of electrifying GA aircraft propulsion • A review of the underlying physics • GA Aircraft power requirements • A brief look at electrifying different GA aircraft types • Relationship between battery specific energy and range • Conclusions 2 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Benefits of electrifying GA aircraft propulsion • Environmental: – Greatly reduced aircraft emissions at the point of use – Reduced use of fossil fuels – Reduced noise • Cost: – Electric aircraft are forecast to be much cheaper to operate – Even with increased acquisition cost (due to batteries), whole-life cost will be reduced dramatically – Large reduction in light aircraft operating costs (e.g. for pilot training) – Potential to re-invigorate the GA sector • Opportunities: – Makes highly distributed propulsion possible – Makes hybrid propulsion possible – Key to new designs for emerging urban air mobility and eVTOL sectors 3 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Energy conversion efficiency Brushless electric motor and controller: • Conversion efficiency ~ 95% for motor, ~ 90% for controller • Variable pitch propeller efficiency ~ 85% • TOTAL ~ 73% Propulsion Type, Propeller Type Conversion Efficiency Comparison with Electric Piston engine, fixed pitch 20% 3.65 x worse Piston engine, constant speed 25% 2.92 x worse Small turboprop, constant speed 23% 3.17 x worse Electric motor, variable pitch 73% 4 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Specific Power and Specific Energy Specific Power (kW/kg) Specific Energy (kWh/kg) • Power output to mass ratio for: • A measure of the storage capacity of an energy – Power sources, e.g. batteries, fuel cells (not fuel!) source compared to its mass – Power conversion, e.g. engines, fuel cells, motors – Approx 0.1kWh to boil 1 Litre of water in a kettle from 20°C • Installed power, max continuous: • Aviation energy storage: ~ 0.8 kW/kg for piston engines (AVGAS) 12.14 kWh/kg for AVGAS ~ 2.5 kW/kg for small turboprops (AVTUR) 11.94 kWh/kg for AVTUR ~ 5.0 kW/kg for brushless electric motors 0.25 kWh/kg for Li-ion Cells 5 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Estimated cost of electric propulsion system • Assumptions for a light aircraft power system: Battery: 0.25 kWh/kg, 90% cycle efficiency, life of 3000 cycles Battery purchase cost £230 / kWh, Motor and Controller £300 / kW Electricity price of £0.144 / kWh (typical UK domestic electricity price) • Over the battery life, an electric aircraft uses: 35% of the energy of an equivalent AVGAS-fuelled aircraft 32% of the energy of an equivalent AVTUR-fuelled aircraft Strong environmental and economic arguments for electrifying AVGAS GA aircraft! • The electric aircraft energy cost (£) is : 23% of that for equivalent AVGAS-fuelled aircraft 50% of that for equivalent AVTUR-fuelled aircraft AVGAS-fuelled aircraft produce only a very small • Whole life cost (£ up to but not including battery replacement): proportion of aviation CO2 53% of equivalent AVGAS-fuelled aircraft emissions 86% of equivalent AVTUR-fuelled aircraft 6 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED Super King Air Pipistrel Alpha Trainer Pilatus PC-12 Diamond DA-42 eVTOL Britten Norman BN-2A Islander Piper PA-28-140 7 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED Range of a propeller aircraft Long range requires minimum drag Max L/D • High L/D ratio • Occurs at minimum drag speed, Vmd Vmd Pipistrel Panthera Estimated L/D polar and power polar 8 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Electrifying a GA Aircraft – simplified analysis Assume no change to: • MTOW • Passenger and payload capacity • Total mass of the propulsion system (including energy storage) Substitute – weight for weight: • Batteries for fuel tanks (full fuel) • Electric motor in place of conventional engine, controller in place of fuel system • Electric motor is smaller and lighter, so make up difference with more batteries! This does not maximise the range, but enables “like with like” comparison 9 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Electrification of GA aircraft – 4 examples © Lilium GmbH 10 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Pipistrel Alpha PARAMETER UNITS VALUE MTOM kg 550 Engine Shaft Power kW 60 Minimum Cruise Power kW 12.2 Minimum Drag Speed kt EAS 66 Max Lift / Drag ratio - 20 Max Range (AVGAS) nm 324 Max Range if electrified nm 84 Range ratio (fuel : electric) - 3.8 11 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Cassutt Special PARAMETER UNITS VALUE MTOM kg 386 Engine Shaft Power kW 75 Minimum Cruise Power kW 30.6 Minimum Drag Speed kt EAS 82 Max Lift / Drag ratio - 7.5 Max Range (AVGAS) nm 391 Max Range if electrified nm 63 Range ratio (fuel : electric) - 6.3 12 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Britten-Norman BN2A Islander PARAMETER UNITS VALUE MTOM kg 2994 Total Engine Shaft Power kW 388 Minimum Cruise Power kW 168.3 Minimum Drag Speed kt EAS 78 Max Lift / Drag ratio - 8.2 Max Range (AVGAS) nm 539 Max Range if electrified nm 58 Range ratio (fuel : electric) - 9.3 13 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Lilium Jet eVTOL (estimated) PARAMETER UNITS VALUE © Lilium GmbH MTOM kg 950 Total Motor Shaft Power kW 320 VTOL Power kW 320 Minimum Cruise Power kW 22.2 Minimum Drag Speed kt EAS 66 Max Lift / Drag ratio - 21 Max Range (battery) nm 160 Max Range (hybrid system) nm 1335 Range ratio (hybrid : battery) - 7.7 14 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED Current Technology Britten-Norman Islander Lilium Jet Pipistrel Panthera Cassutt Special Pipistrel Alpha Trainer 15 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ 4 x Current Technology Britten-Norman Islander Pipistrel Panthera Cassutt Special Pipistrel Alpha Trainer Lilium Jet 16 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ 16 x Current Technology Britten-Norman Islander Pipistrel Panthera Pipistrel Alpha Trainer Cassutt Special Lilium Jet 17 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED Conclusions (1) Compared to aviation fuel burning engines, electric motors are: • Up to 3.65 times more efficient • 50 – 80% lighter installed weight (same continuous power rating) Current Li-ion batteries have only 1/48th of the specific energy of fuel: • Partly compensated by efficiency and light weight of electric motors • Range reduction factor of 3 – 11 for small GA aircraft (up to 2000kg MTOM) • Range reduction factor of 9 – 16 for larger GA aircraft (Part 23 Normal Category, up to 5670 kg MTOM) Battery-only electric propulsion is feasible for small GA aircraft applications: • Where power requirements are low (small payload, low cruise speed, high L/D ratio) • Where high power is required but only for a short time (e.g. air racing) • Where reduced range is not a problem (e.g. basic flight training, short range air mobility) • eVTOL hover and transition flight phases, and cruise if only very short range is required 18 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Conclusions (2) Battery-only electric propulsion is well-suited to: • Initial pilot training, with significantly reduced cost • Small GA aircraft (e.g. SSDR, Microlights, CS-VLA) • Motor gliders, gliders with sustainers • Air racing, aerobatics (high power, short duration) • Short-range air-taxis / urban air mobility / eVTOL To be feasible for larger GA aircraft or longer range, we need: • Large batteries, as a percentage of airframe empty weight (i.e. reduced payload) • A step change in battery specific energy, or… • Hybrid propulsion for the cruise phase (e.g. turboshaft + generator, or fuel cells) In a hybrid system, batteries are still essential for take-off, climb and go-around 19 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED 20 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Photo credits and licensing • Pipistrel Panthera: – https://commons.wikimedia.org/wiki/File:Pipistrel_Panthera_aircraft.JPG – Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License • Pipistrel Alpha: – https://commons.wikimedia.org/wiki/File:F-WLAB_Pipistrel_Alpha_Electro_3_(cropped).jpg – Licensed under the Creative Commons Attribution-Share Alike 4.0 International License • Britten-Normal Islander: – https://commons.wikimedia.org/wiki/File:Anguilla_Air_Services_Britten-Norman_Islander_(VP- AAC)_at_St_Marteen_(SXM-TNCM).jpg – Licensed under the Creative Commons Attribution-Share Alike 2.0 Generic License • Cassutt Special: – https://commons.wikimedia.org/wiki/File:Reno_Formula1_Cassutt_8479.jpg – Licensed under the Creative Commons Attribution 3.0 Unported License • Lilium Jet: – https://lilium.com/newsroom
Recommended publications
  • THE ROADMAP to Scalable Urban Air Mobility
    THE ROADMAP to scalable urban air mobility White paper 2.0 We bring urban air mobility to life. FOREWORD BY THE CEO MAKING HISTORY When I joined Volocopter in 2015, an amazing team of innovators had already made aviation history. With a dream, a yoga ball,1 and a new configuration of distributed electric vertical takeoff and landing (eVTOL) technology, Volocopter pioneered the way for electric passenger flights as early as 2011. Since then, Volocopter has relentlessly pursued its dream and continued to make great strides. I have witnessed the idea of electric flight grow into a fully-fledged initiative to bring seamless urban air mobility to cities. It’s true, we developed a revolutionary aircraft. But in fact, we launched the creation of an entire industry. The yoga ball evolved into the first certified multicopter, and Volocopter evolved to become the world’s first and only electric multicopter company with Design Organisation Approval (DOA) from the European Union Aviation Safety Agency (EASA). Five years, six very public flights, and two city commitments later, Volocopter continues to lead the pack as the “Pioneer of Urban Air Mobility” both in certification and in robust partnerships. We have set the stage for the next transformative industry. BRINGING URBAN AIR MOBILITY TO LIFE As the category-defining company, we are investing in multidimensional mobility. And as a team, we are engineering it. Volocopter has combined cutting-edge eVTOL technology with a holistic partnership approach as we build the world’s first fully electric, scalable UAM business for affordable air taxi services in cities.
    [Show full text]
  • UAT-ARC Final Report
    Unleaded AVGAS Transition Aviation Rulemaking Committee FAA UAT ARC Final Report Part I Body Unleaded AVGAS Findings & Recommendations 17 February 2012 UAT ARC Final Report – Part I Body February 17, 2012 Table of Contents List of Figures …………………………………………………………………………… 6 Executive Summary……………………………………………………………………… 8 1. Background …………………..……………………………………………………. 11 1.1. Value of General Aviation………………………………………………… 11 1.2. History of Leaded Aviation Gasoline…………………………………….. 13 1.3. Drivers for Development of Unleaded Aviation Gasoline……………… 14 2. UAT ARC Committee ……………………………………………………………… 16 2.1. FAA Charter……………………………………………………………….. 16 2.2. Membership ………………..…………………………………………….. 17 2.3. Meetings, Telecons, & Deliberations…………….……………………… 17 3. UAT ARC Assessment of Key Issues…………………………………………… 18 3.1. Summary of Key Issues Affecting Development & Transition to an Unleaded AVGAS…………………………………………………………….. 18 3.1.1. General Issues……………………………………………………… 18 3.1.2. Market & Economic Issues………………………………………… 18 3.1.3. Certification & Qualification Issues……………………………….. 18 3.1.4. Aircraft & Engine Technical Issues………………………………. 19 3.1.5. Production & Distribution Issues………………………………….. 19 3.1.6. Environment & Toxicology Issues………………………………… 19 3.2. General Issues – Will Not Be A Drop-In…………………………….……. 20 3.2.1. Drop-In vs. Transparent……………..……………………………. 20 3.2.2. Historic Efforts Focused on Drop-In…………………………….. 21 3.2.3. No Program to Support Development of AVGAS………………. 21 3.3. Market & Economic Issues…………………….. …………………………. 22 3.3.1. Market Forces……………………………………………………… 22 3.3.2. Aircraft Owner Market Perspective……………………………….. 23 3.3.3. Fleet Utilization …………..…………………………………………. 24 3.3.4. Design Approval Holder (DAH) Perspective ……………………. 25 3.4. Certification & Qualification Issues…………………………………………. 26 3.4.1. FAA Regulatory Structure…….……………………………………. 26 3.4.2. ASTM and FAA Data Requirements………………..……………. 27 3.4.3. FAA Certification Offices…………………………………………… 28 3.4.4.
    [Show full text]
  • 550 Series Avgas Engine
    The 550 series includes 550 in3 models in either naturally aspirated or turbocharged configurations. With the right combination of thrust and efficiency, our 550-series engines are powering some of the most successful and high performing aircraft in general aviation history like the Cirrus® SR22T and Beechcraft® Baron/Bonanza, and Mooney®. With a powerful range of 280 to 350 HP at 2500 to 2700 RPM, you’ll be glad you fly a 550. THE 550 SERIES IS A FAMILY CERTIFIED FUELS: STROKE: TYPICAL WEIGHT: 100/100LL & 94UL 107.95 mm 207 to 317 kg OF AIR COOLED, NATURALLY AvGas (TSIO-550-K only) 4.25 in 456 to 699 lbs ASPIRATED, HORIZONTALLY DISPLACEMENT: COMPRESSION TIME BETWEEN OPPOSED, 6-CYLINDER, 9046 cm³ (COMP.) RATIO: OVERHAUL (TBO): 552 in3 7.5:1 1800 – 2200 hours GASOLINE, FUEL INJECTED, SPARK 8.5:1 IGNITION, FOUR-STROKE, DIRECT POWER: TURBO MODEL 209 to 261 kW HEIGHT: AVAILABILITY: DRIVE, RIGHT (CW) ROTATING, 280 to 350 HP 501.7 to 933.2 mm Yes AIRCRAFT ENGINE WITH MANUAL 19.75 to 36.74 in MAXIMUM ENGINE CONTROLS FOR FIXED RATED RPM: WIDTH: 2500 to 2700 r/min 852.4 to 1076.7 mm WING AIRCRAFT. THE TURBO 2500 to 2700 rpm 33.56 to 42.39 in SERIES IS TURBOCHARGED FOR BORE: LENGTH: FIXED WING AIRCRAFT. 133.35 mm 933.2 to 1215.6 mm 5.25 in 36.74 to 47.86 in WWW.CONTINENTAL.AERO # RATED DRY CERTIFIED COMP. TIME BETWEEN FAA MODEL 1 BORE × STROKE DISPLACEMENT 2 FUEL OVERHAUL CYL POWER WEIGHT GRADE RATIO (TBO) TCDS 224 kW @ 2700 133.35 x 107.95 mm 9046 cm³ 206.8 kg IO-550-A 6 100/ 100LL 8.5:1 1900 hours E3SO 300 HP @ 2700 5.25 x 4.25 in 552 in³ 455.9
    [Show full text]
  • Comments of the General Aviation Avgas Coalition
    COMMENTS OF THE GENERAL AVIATION AVGAS COALITION ON THE ADVANCE NOTICE OF PROPOSED RULEMAKING ON LEAD EMISSIONS FROM PISTON-ENGINE AIRCRAFT USING LEADED AVIATION GASOLINE EPA DOCKET NO. EPA–HQ–OAR–2007–0294 - 1 - I. INTRODUCTION On April 28, 2010, the Environmental Protection Agency (“EPA”) published in the Federal Register an “Advance Notice of Proposed Rulemaking on Lead Emissions from Piston- Engine Aircraft Using Leaded Aviation Gasoline” (the “ANPR”). 75 Fed. Reg. 22440. The General Aviation AvGas Coalition (the “Coalition”) respectfully submits the following comments on the ANPR. The Coalition is comprised of associations that represent industries, businesses, and individuals that would be directly impacted by any finding made by the EPA in regard to lead emissions from piston-engine aircraft, corresponding aircraft emissions standards, and related changes to the formulation of aviation gasoline. Coalition membership includes the Aircraft Owners and Pilots Association (“AOPA”), the Experimental Aircraft Association (“EAA”), the General Aviation Manufacturers Association (“GAMA”), the National Air Transportation Association (“NATA”), the National Business Aviation Association (“NBAA”), the American Petroleum Institute (“API”) and the National Petrochemical and Refiners Association (“NPRA”). Together, these organizations represent general aviation aircraft owners, operators, and manufacturers, and the producers, refiners, and distributors of aviation gasoline. 1 Since the establishment of the first National Ambient Air Quality Standard (“NAAQS”) for lead in 1978, the general aviation and petroleum industries have been committed to safely reducing lead emissions from piston powered aircraft. Today, 100 octane low lead (“100LL”) aviation gasoline (or “avgas”) contains 50 percent less lead than it did when the lead NAAQS were first introduced, dramatically reducing lead emissions from general aviation.
    [Show full text]
  • 2021 AHNA Options Catalogue
    OPTIONS CATALOGUE 2021 Return to the Table of Contents Contact and Order Information U.S.A: +1 800-COPTER-1 [email protected] Canada: +1 800-267-4999 [email protected] © July 2021 Airbus Helicopters, all rights reserved. 002 | Options Catalogue 2021 Options Catalogue INTRODUCTION At Airbus Helicopters in North America, our engineering excellence and completions capability is an integral part of meeting your operating requirements. We are committed to providing OEM approved equipment modifications that further enhance your experience with our product line. This catalogue illustrates a grouping of our most important and interesting options available for the H125, H130, H135, and H145 aircraft families. Airbus Helicopters, Inc. is a certified “Design Approval Organization” by the Federal Aviation Administration. Airbus Helicopters Canada is a certified “Design Approval Organization” by Transport Canada. As customer centers, we have also been recognized as an Authorized Design Organization by the Airbus Helicopters Group (AH Group). For more information, please visit Airbus World or see contact information on the next page. Airbus Helicopters' Airbus World customer portal simplifies customers’ daily operations and allows them to focus on what really matters: their business. Air- bus World is an innovative online platform for accessing technical publications, placing orders and quotations, managing fleet data as well as warranty claims, and receiving quick responses to support and services questions. Airbus Helicopters reserves the right to make configuration and data changes at any time without notice. Information contained in this document is expressed in good faith and does not constitute any offer or contract with Airbus Helicopters.
    [Show full text]
  • Urban Air Mobility | USD 90 Billion of Potential: How to Capture a Share of the Passenger Drone Market
    Urban Air Mobility | USD 90 billion of potential: How to capture a share of the passenger drone market The Roland Berger Center for Smart Mobility MANAGEMENT SUMMARY Urban Air Mobility / USD 90 billion of potential: How to capture a share of the passenger drone market Our updated market analysis and Global Urban Air Mobility Radar show that the passenger Urban Air Mobility (UAM) market is set to soar. The number of UAM projects continues to rise, barriers to progress – such as regulation and public acceptance – are increasingly being overcome and the coronavirus crisis shows no sign of causing serious delays. By 2050, we estimate that the passenger UAM industry will generate revenues of almost USD 90 billion a year, with 160,000 commercial passenger drones plying the skies. This potential is driving the emergence of an integrated ecosystem in the nascent UAM industry, consisting of five major building blocks: eVTOL vehicles; maintenance, repair and overhaul services; flight operations; physical infrastructure; and digital infrastructure. First collaborations are forming across this ecosystem. Yet among the many disparate market players, no dominant passenger UAM player or business model has emerged yet. Instead, companies are tending towards four business model archetypes: system providers, who are involved across the value chain, and service providers, hardware providers and ticket brokers, who focus on distinct areas. Most players are currently positioning themselves as system providers to gain as much industry knowledge as possible, and we believe this trend will continue. A shake out and consolidation are likely in the coming years. Despite the lack of a proven business model, investors are strongly backing the passenger UAM industry.
    [Show full text]
  • Aircraft Fleet Trends
    Aircraft Fleet Trends The aircraft fleet based and utilized in Minnesota ranges from the smallest single-engine airplanes used by general aviation pilots to the largest wide-body aircraft used for long haul domestic and international commercial travel. Wide-body aircraft are large enough to accommodate two passenger aisles with seven to ten seats across the aircraft. National and global trends are affecting the way airlines, corporations, and private pilots purchase and utilize their aircraft. This paper provides insight into aircraft fleet trends. Every year the FAA evaluates how the economy impacts aviation by forecasting changes in the aircraft fleet, including all types of aircraft from large commercial service aircraft to single-seat general aviation airplanes and drones. The 20-year forecasts also evaluate how many hours pilots are flying, how many passengers are taking commercial flights, and the demand for cargo flights. The results are published annually in the FAA Aerospace Forecasts. General Aviation Fleet The total active general aviation fleet was in decline between 2008 and 2013.1 Beginning in 2014, deliveries of general aviation aircraft fleet began to gradually increase. In 2017, the FAA forecasts stated the active general aviation fleet would increase by an average annual rate of 0.1 percent over the 21-year forecast period. There are three categories of aircraft included in the general aviation fleet: piston powered aircraft, turbine powered aircraft, and light sport aircraft. Piston aircraft have piston powered engines connected to propellers on aircraft which allow the aircraft to move through the air and on the ground. Piston aircraft fly at lower altitudes than turbine powered aircraft.
    [Show full text]
  • Aerodynamic Analysis and Design of a Twin Engine Commuter Aircraft
    28TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC ANALYSIS AND DESIGN OF A TWIN ENGINE COMMUTER AIRCRAFT Fabrizio Nicolosi*, Pierluigi Della Vecchia*, Salvatore Corcione* *Department of Aerospace Engineering - University of Naples Federico II [email protected]; [email protected], [email protected] Keywords: Aircraft Design, Commuter Aircraft, Aerodynamic Analysis Abstract 1. Introduction The present paper deals with the preliminary design of a general aviation Commuter 11 seat Many in the industry had anticipated 2011 to be aircraft. The Commuter aircraft market is today the year when the General Aviation characterized by very few new models and the manufacturing industry would begin to recover. majority of aircraft in operation belonging to However, the demand for business airplanes and this category are older than 35 years. Tecnam services, especially in the established markets of Aircraft Industries and the Department of Europe and North America, remained soft and Aerospace Engineering (DIAS) of the University customer confidence in making purchase of Naples "Federico II" are deeply involved in decision in these regions remained weak. This the design of a new commuter aircraft that inactivity, nonetheless, was offset in part by should be introduced in this market with very demand from the emerging markets of China good opportunities of success. This paper aims and Russia. While a full resurgence did not take to provide some guidelines on the conception of place in 2011, the year finished with signs of a new twin-engine commuter aircraft with recovery and reason of optimism. GAMA eleven passengers. Aircraft configuration and (General Aviation Manufacturer Association) cabin layouts choices are shown, also compared 2011 Statistical Databook & Industry Outlook to the main competitors.
    [Show full text]
  • Flying Efficiently
    MIKE BUSCH COMMENTARY / SAVVY AVIATOR A GPS-coupled fuel totalizer (like this Shadin Digifl o that I have in my airplane) is a great help in achieving Flying maximum effi ciency. Efficiently It’s more important than ever to get the best bang for the buck HOW CAN WE GET THE BEST FUEL economy from our airplanes? Given much energy as possible from each combus- the painful cost of avgas these days, this question is on lots of airplane tion event before the exhaust valve opens and owners’ minds. That goes at least double for unfortunate folks like me discards what’s left. and Mac McClellan who fl y twins. It’s a subject I’ve thought about— Operating at WOT and low rpm will make and researched—quite a bit. some pilots uncomfortable, because they had a It turns out that there are lots of pieces to this puzzle. There are all fl ight instructor who taught them never to sorts of things we can do to optimize effi ciency. Some are simple; some operate the engine oversquare—that is, with are a bit more complex. It takes considerable attention to detail to fl y manifold pressure (in inches) greater than the as effi ciently as possible. rpm (divided by 100). This is exactly what I was taught by my primary instructor in 1965, THROTTLE and it took me more than a decade to fi gure Let’s start with something simple: throttle position. out that my CFI didn’t know what the heck he Our piston aircraft engines are always most effi cient at wide-open was talking about.
    [Show full text]
  • Apis Contest Taurus(Electro)
    Welcome NASA PAV Apis contest The CAFÉ Foundation’s With the addition of Inaugural NASA PAV Apis/Bee to the product Centennial Challenge line, Pipistrel is now concluded on August 11 in the most complex small Santa Rosa, California, and aircraft producer IN THE brought forth remarkable WORLD, the ONLY AIRCRAFT performances by several PRODUCER offering both Personal Air Vehicles (PAVs). single-seat and two- This great event was made seater side-by-side self- possible by support from launching gliders, two-seat NASA and Boeing Phantom motorgliders, UL two-seat INDEX Works. Winning teams go-the-distance aircraft, Electric Powered shared cash prizes from trikes and propellers. 1 Welcome Apis NASA totaling $250,000. We are excited about Taurus (Electro) Prizes were awarded for welcoming all existing and Electric Powered Taurus Shortest Runway, Lowest new Apis/Bee family owners Nasa PAV Contest Noise, Highest Top Speed, and we are confident to In 1995, Pipistrel d.o.o. Ajdovščina glide ratio of Best Handling Qualities, provide them with the best Our Dealers around the World were the first in the World to present at least 1:40; and Most Efficient, with possible service! a two-seat ultralight aircraft with a make gliding the grand Vantage Prize of From its beginnings, Apis/ 2 Project Hydrogenus wing-span of 15 meters, aimed also at cheap; provide $100,000 going to the best Bee was developed as a glider pilots. The aircraft was the Sinus, a fully equipped aircraft, including a Pipistrel Factory: combination of performance sister-ship to the Pipistrel’s still going strong in production.
    [Show full text]
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • DEVELOPMENT TRENDS and PROSPECTS for Evtol
    Mitsui & Co. Global Strategic Studies Institute Monthly Report June 2018 DEVELOPMENT TRENDS AND PROSPECTS FOR eVTOL: A NEW MODE OF AIR MOBILITY Hideki Kinjo Industry Innovation Dept., Technology & Innovation Studies Div. Mitsui & Co. Global Strategic Studies Institute SUMMARY Development activities are gaining momentum for “electric vertical takeoff and landing aircraft” (eVTOL), which is designed to transport several passengers over short distances by air. Technology advancements, such as batteries and motors in the automotive industry and autopilot navigation in the drone industry are the backgrounds. Many startups, as well as major aircraft manufacturers, are now entering into eVTOL aircraft development. Among the services envisioned, the US company Uber aims to launch an air taxi service in the first half of the 2020s. Challenges with respect to aircraft development have mainly to do with batteries, while on the services front, ensuring safety and securing profitability are the issues. As for eVTOL initial spread in the market, it may possibly be for first aid and other emergency response services and in emerging economies where flight regulations are less stringent. The development of electric vertical takeoff and landing aircraft (eVTOL) is gaining momentum. Three- dimensional mobility in the sky is expected to provide passengers with much shorter travel times and greater convenience. This report discusses the unique features of eVTOL, trends in aircraft development, moves in the area of services, challenges to make eVTOL travel a reality, and future prospects. eVTOL REPRESENTS A NEW MODE OF MOBILITY MADE POSSIBLE BY TRANSFERRING TECHNOLOGIES FROM OTHER INDUSTRIES The eVTOL can be described as a vehicle that fits somewhere in between a drone and a conventional airplane.
    [Show full text]