Recurrent Inversion with Concomitant Deletion and Insertion Events in The

Total Page:16

File Type:pdf, Size:1020Kb

Recurrent Inversion with Concomitant Deletion and Insertion Events in The HUMAN MUTATION Mutation in Brief #977 (2007) Online MUTATION IN BRIEF Recurrent Inversion with Concomitant Deletion and Insertion Events in the Coagulation Factor VIII Gene Suggests a New Mechanism for X-Chromosomal Rearrangements Causing Hemophilia A Christiane Mühle1,2, Martin Zenker3, Nadia Chuzhanova4, and Holm Schneider1,2* 1Experimental Neonatology, Department of Pediatrics, Medical University of Innsbruck, Austria; 2Children’s Hospital, University of Erlangen-Nuernberg, Erlangen, Germany; 3Institute of Human Genetics, University of Erlangen-Nuernberg, Germany; 4Department of Biological Sciences, University of Central Lancashire, Preston, United Kingdom *Correspondence to Dr. Holm Schneider, Experimental Neonatology, Department of Pediatrics, Medical University of Innsbruck, Innrain 66, 6020 Innsbruck, Austria; Tel.: +43 512 50425732; Fax: +43 512 50424680; E-mail: [email protected] Grant sponsor: The study was supported by a grant from Wyeth Pharma GmbH (Germany) to CM and HS. Communicated by Stylianos E. Antonarakis Recurrent int22h-related inversions in the coagulation factor VIII gene (F8) are the most common cause of severe hemophilia A. Such inversions have repeatedly been hypothesized to be associated with concomitant deletions that are responsible for an increased risk of immune responses against therapeutic exogenous factor VIII. However, exact DNA breakpoints have not yet been reported. In a patient with persistent factor VIII-inactivating antibodies, molecular analysis of F8 including Southern Blot, long-range PCR and primer walking techniques revealed a combination of an int22h2-related inversion, deletion of exons 16-22 and insertion of a duplicated part of the X-chromosomal MPP1 gene. This novel genomic rearrangement was also detectable in the patient’s mother, but absent in both maternal grandparents. The genetic defect most likely originated from a complex X- chromosomal recombination event during spermatogenesis due to the formation of a DNA loop stabilized by Alu and LINE repeat elements. Elucidation of such combined mutations may allow early identification of patients at high risk of developing factor VIII-neutralizing antibodies and will help to understand the mechanisms behind gross chromosomal rearrangements causing hemophilia A and other diseases. © 2007 Wiley-Liss, Inc. KEY WORDS: hemophilia A; F8; X-chromosome; breakpoints; inversion; deletion; insertion INTRODUCTION Hemophilia A (MIM# 306700), the most common severe coagulation disorder with an incidence of 1 in 5000 males, is caused by absence or impaired activity of clotting factor VIII (FVIII) resulting from various mutations of the FVIII gene (F8). This large gene, which has been mapped to the most distal band (Xq28) of the long arm of the X chromosome, comprises 26 exons spread over 186 kb. Approximately half of the hemophiliacs with less than 1 % FVIII activity carry a genomic inversion originating from a hot spot of intrachromosomal recombination Received 9 March 2007; accepted revised manuscript 17 May 2007. © 2007 WILEY-LISS, INC. DOI: 10.1002/humu.9506 2 Mühle et al. between a 9.5 kb region within F8 intron 22 (int22h1) and one of its two extragenic telomeric copies on the X- chromosome, int22h2 or int22h3 (Lakich et al., 1993). Disruption of F8 may also occur by recombination between a 1 kb portion of F8 intron 1 and its duplicated extragenic version (Bagnall et al., 2002). In the remaining cases, hemophilia A has been attributed to a broad spectrum of mostly private mutations scattered over the entire gene (Kemball-Cook et al., 1998). Although a genomic inversion normally does not result in gain or loss of DNA, unusual patterns in Southern blots or long-range PCR for the detection of int22h-related inversions have led to the hypothesis of concomitant deletions (Schroder et al., 1996; Andrikovics et al., 2003) which would be associated with an increased risk of developing FVIII-inactivating antibodies (inhibitors). Such antibodies represent a major obstacle to FVIII replacement therapy. They are found in approximately 41 % of hemophiliacs carrying a large deletion in F8, whereas only 21 % of patients with a recurrent int22h-related inversion develop FVIII-neutralizing antibodies (Oldenburg et al., 2004). However, DNA breakpoints of few large deletions in F8 have been determined exactly. Although some deletions have been associated with non-homologous recombination (Woods-Samuels et al., 1991), more recent reports demonstrated unequal homologous recombination between Alu-derived sequences to be responsible for deletions in the Alu-rich F8 (Vidal et al., 2002; Rossetti et al., 2004). None of any fully characterized deletion in this gene was combined with an int22h-related inversion. Here, we report the first case of a hemophiliac with a complex genomic rearrangement including a recurrent int22h-related inversion, a deletion of F8 exons 16-22 and an insertion of an MPP1 gene fragment. We propose a mechanism for a multi-step recombination event which is likely to have occurred within one generation during spermatogenesis and which led to severe hemophilia A with high-titer inhibitors resistant to repeated attempts of immune tolerance induction. MATERIAL AND METHODS Case report The index patient is the second child of Caucasian parents with no family history of bleeding disorders. Severe hemophilia A was diagnosed at the age of three months subsequent to intramuscular vaccination. FVIII activity was found to be below 1 % with VWF:Ag of 90 % and VWF:RCo of 56 % and no abnormal changes in multimer analysis. Following treatment with recombinant FVIII, the child developed inhibitors within 40 exposure days, which were quantified using the Nijmegen modification of the Bethesda assay (Verbruggen et al., 1995). Two attempts of immune tolerance induction under different regimes and clotting factor concentrates failed. Inhibitor levels rose temporarily above 2000 BU/ml before a third trial with simultaneous immunosuppression finally lowered the antibody concentration to <2 BU/ml. The polyclonal FVIII-specific antibodies were found to bind to both the heavy and the light chain of FVIII with main epitopes in the domains A1, A2 and C1 (Muhle et al., 2004). The patient’s sister showed a FVIII activity of 10 % with VWF:Ag of 69 % and VWF:RCo of 28 % suggesting a carrier status, whereas the FVIII levels of the patient’s mother were within the normal range. The family gave informed consent to participate in the study in accordance with the Declaration of Helsinki. DNA analysis Genomic DNA was extracted from peripheral blood lymphocytes and investigated for int22h-related inversions by Southern Blot (Lakich et al., 1993) and long-range PCR (Liu et al., 1998) employing two additional PCR primers with 5’-G/C-extensions, F8int22_A2 (5’-GCCTGCATTTCCCATCAAAATGCTAACATTGTTTTTCA- 3’) and F8int22_A3 (5’-GTTACGGGCCTTGCTGCTTTGTCCAGTTTCAGG-3’), to distinguish between recombinations with int22h3 and int22h2 (type 1 and type 2 inversion, respectively). This primer set differs from the recently published novel set for a discriminating long-range PCR (Bagnall et al., 2006). Routine PCR analysis (Oldenburg et al., 2001) was carried out to demonstrate the presence or absence of F8 exons. Further PCR amplifications of intronic regions for breakpoint localization, across the breakpoint and for haplotyping were performed according to standard PCR protocols based on the F8 sequence from the UCSC Human Genome Browser Project (genome.ucsc.edu, NCBI Build 36.1; primer sequences and conditions obtainable from the authors). The genomic DNA insert in the patient’s F8 was identified using the DNA Walking SpeedUp Premix Kit (Seegene, BioCat, Germany). DNA sequencing was performed with the BigDye Terminator sequencing mix (Applied BiosystemsSpecific) on an automated capillary ABI PRISM 310 sequencer. Paternity of the maternal grandfather was verified using the PowerPlex 16 system (Promega, Mannheim, Germany). Combined Inversion, Deletion and Insertion in F8 3 Karyotyping of blood lymphocytes was done by routine procedures. Interphase nuclei and metaphase chromosome spreads were investigated by fluorescence in situ-hybridization (FISH) with a F8-specific probe from the BAC clone RP11-671F22. RESULTS AND DISCUSSION In the index patient, routine Southern blot analysis to detect int22h-related inversions in F8 resulted in an unusual pattern. While bands of 16.0 kb and 15.5 kb representing the int22h3 and the hybrid int22h2/1 fragment, respectively, were easily detected, the 20.0 kb band typical for the inversion (Lakich et al., 1993) was missing. Long-range PCR confirmed an int22h2-related inversion by yielding the expected A2Q product for int22h2/1, however, lack of an amplification product with primers P and B (Fig. 1A) indicated a deletion within the int22h1/2 counterpart. The newly designed primers A2 and A3 allowed here a PCR-based distinction between the frequent type 1 and the less common type 2 inversion involving int22h3 and int22h2, respectively, which is routinely done by more laborious and material-consuming Southern blot analysis (Lakich et al., 1993). Attempts to amplify F8 exons 16 to 22 by PCR failed consistently, although other exons of this gene were readily detected. PCR analysis of regions within introns 15 and 22 was performed to determine the extent of the deletion (Fig. 1B), but the presence of large sequence homology regions flanking both int22h2 and int22h3 as a palindrome (Fig. 2) precluded the exact localization of the distal breakpoint. Because
Recommended publications
  • Roles and Mechanisms of Kinesin-6 KIF20A in Spindle Organization During Cell Division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She
    European Journal of Cell Biology 98 (2019) 74–80 Contents lists available at ScienceDirect European Journal of Cell Biology journal homepage: www.elsevier.com/locate/ejcb Review Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China ARTICLE INFO ABSTRACT Keywords: Mitotic kinesin is crucial for spindle assembly and chromosome segregation in cell division. KIF20A/MKlp2, a Kinesin-6 member of kinesin-6 subfamily, plays important roles in the central spindle organization at anaphase and cy- KIF20A tokinesis. In this review, we briefly introduce the discovery and classification of kinesin-6 motors in model Microtubule organisms, and summarize the biochemical features and mechanics of KIF20A proteins. We emphasize the Anaphase complicated interactions of KIF20A with partner proteins, including MKlp1, Plk1 and Rab6. Particularly, we Spindle assembly highlight the regulation of Cdk1 and chromosomal passenger complex on kinesin-6 KIF20A at late stage of Mitosis mitosis. We summarized the multiple functions of KIF20A in central spindle assembly and the formation of cleavage furrow in both mitosis and meiosis. In addition, we conclude the expression patterns of KIF20A in tumorigenesis and its applications in tumor therapy. 1. Introduction kinesin superfamily proteins (Miki et al., 2005). Kinesin-6 subfamily is comprised of KIF20A (Lawrence et al., 2004), KIF20B (MPP1) Kinesin superfamily proteins (KIFs) are molecular motors that (Kamimoto et al., 2001; Matsumoto-Taniura et al., 1996; Westendorf mediate the transport of various cargos, including the newly synthe- et al., 1994) and MKlp1 (Lawrence et al., 2004; Nislow et al., 1990; sized protein complexes, vesicles and mRNAs along the microtubule Sellitto and Kuriyama, 1988).
    [Show full text]
  • Not Just Another Scaffolding Protein Family: the Multifaceted Mpps
    molecules Review Not Just Another Scaffolding Protein Family: The Multifaceted MPPs 1, 1, 1 Agnieszka Chytła y , Weronika Gajdzik-Nowak y , Paulina Olszewska , Agnieszka Biernatowska 1 , Aleksander F. Sikorski 2 and Aleksander Czogalla 1,* 1 Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; [email protected] (A.C.); [email protected] (W.G.-N.); [email protected] (P.O.); [email protected] (A.B.) 2 Research and Development Center, Regional Specialist Hospital, Kamie´nskiego73a, 51-154 Wroclaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-71375-6356 These authors contribute equally. y Academic Editor: Luís M.S. Loura Received: 16 September 2020; Accepted: 20 October 2020; Published: 26 October 2020 Abstract: Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences.
    [Show full text]
  • Cholesterol Interaction with the MAGUK Protein Family Member, MPP1, Via CRAC and CRAC-Like Motifs: an in Silico Docking Analysis
    RESEARCH ARTICLE Cholesterol Interaction with the MAGUK Protein Family Member, MPP1, via CRAC and CRAC-Like Motifs: An In Silico Docking Analysis Marcin A. Listowski1, Jacek Leluk2, Sebastian Kraszewski3, Aleksander F. Sikorski1,2* 1 Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland, 2 Department of Molecular Biology, University of Zielona Góra, Zielona Góra, Poland, 3 Department of Biomedical Engineering, Wrocław University of Technology, Wrocław, Poland * [email protected] Abstract OPEN ACCESS Cholesterol is essential for the proper organization of the biological membrane. Therefore, predicting which proteins can bind cholesterol is important in understanding how proteins Citation: Listowski MA, Leluk J, Kraszewski S, participate in lateral membrane organization. In this study, a simple bioinformatics approach Sikorski AF (2015) Cholesterol Interaction with the MAGUK Protein Family Member, MPP1, via CRAC was used to establish whether MPP1, a member of the MAGUK protein family, is capable of and CRAC-Like Motifs: An In Silico Docking Analysis. binding cholesterol. Modelled and experimentally-validated fragment structures were mined PLoS ONE 10(7): e0133141. doi:10.1371/journal. from online resources and searched for CRAC and CRAC-like motifs. Several of these pone.0133141 motifs were found in the primary structure of MPP1, and these were structurally visualized Editor: Robert J Deschenes, College of Medicine, to see whether they localized to the protein surface. Since all of the CRAC and CRAC-like University of South Florida, UNITED STATES motifs were found at the surface of MPP1 domains, in silico docking experiments were per- Received: December 18, 2014 formed to assess the possibility of interaction between CRAC motifs and cholesterol.
    [Show full text]
  • MPP1-Based Mechanism of Resting State Raft Organization in the Plasma Membrane. Is It a General Or Specialized Mechanism in Erythroid Cells?
    FOLIA HISTOCHEMICA REVIEW ET CYTOBIOLOGICA Vol. 57, No. 2, 2019 pp. 43–55 MPP1-based mechanism of resting state raft organization in the plasma membrane. Is it a general or specialized mechanism in erythroid cells? Magdalena Trybus, Lukasz Niemiec, Agnieszka Biernatowska, Anita Hryniewicz-Jankowska, Aleksander F. Sikorski Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw Abstract Biological membranes are organized in various microdomains, one of the best known being called membrane rafts. The major function of these is thought to organize signaling partners into functional complexes. An im- portant protein found in membrane raft microdomains of erythroid and other blood cells is MPP1 (membrane palmitoylated protein 1)/p55. MPP1 (p55) belongs to the MAGUK (membrane-associated guanylate kinase homolog) family and it is a major target of palmitoylation in the red blood cells (RBCs) membrane. The well- known function of this protein is to participate in formation of the junctional complex of the erythrocyte mem- brane skeleton. However, its function as a “raft organizer” is not well understood. In this review we focus on recent reports concerning MPP1 participation in membrane rafts organization in erythroid cells, including its role in signal transduction. Currently it is not known whether MPP1 could have a similar role in cell types other than erythroid lineage. We present also preliminary data regarding the expression level of MPP1 gene in several non-erythroid cell lines. (Folia Histochemica et Cytobiologica 2019, Vol. 57, No. 2, 43–55) Key words: membrane palmitoylated protein 1 (MPP1); resting state rafts; lateral membrane organization; raft-associated proteins Introduction maintaining erythrocyte membrane mechanical properties plays membrane skeleton, whose structure The red cell membrane comprises a lipid bilayer and function have been a subject of many studies and with integral membrane proteins embedded in it and reviews [1–3].
    [Show full text]
  • Anti-MPP1 Antibody (ARG58994)
    Product datasheet [email protected] ARG58994 Package: 100 μl anti-MPP1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes MPP1 Tested Reactivity Hu Tested Application FACS, IHC-P Host Rabbit Clonality Polyclonal Isotype IgG Target Name MPP1 Antigen Species Human Immunogen KLH-conjugated synthetic peptide corresponding to aa. 301-327 of Human MPP1. Conjugation Un-conjugated Alternate Names AAG12; PEMP; DXS552E; EMP55; Membrane protein, palmitoylated 1; p55; MRG1; 55 kDa erythrocyte membrane protein Application Instructions Application table Application Dilution FACS 1:10 - 1:50 IHC-P 1:50 - 1:100 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 52 kDa Properties Form Liquid Purification Purification with Protein A and immunogen peptide. Buffer PBS and 0.09% (W/V) Sodium azide. Preservative 0.09% (W/V) Sodium azide Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol MPP1 Gene Full Name membrane protein, palmitoylated 1, 55kDa Background This gene encodes the prototype of the membrane-associated guanylate kinase (MAGUK) family proteins. MAGUKs interact with the cytoskeleton and regulate cell proliferation, signaling pathways, and intercellular junctions.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Erythrocyte Scaffolding Protein P55/MPP1 Functions As an Essential Regulator of Neutrophil Polarity
    Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity Brendan J. Quinna, Emily J. Welcha, Anthony C. Kima, Mary A. Lokutab,1, Anna Huttenlocherb, Anwar A. Khana, Shafi M. Kuchaya, and Athar H. Chishtia,2 aDepartment of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and bDepartments of Pediatrics and Pharmacology, University of Wisconsin, Madison, WI 53706 Edited by Henry R. Bourne, University of California, San Francisco, CA, and approved September 16, 2009 (received for review June 23, 2009) As mediators of innate immunity, neutrophils respond to chemoat- p85/p110 in immunoprecipitates (7). Neutrophils treated with tractants by adopting a highly polarized morphology. Efficient che- the PI3K␥ inhibitors PIK-90 or -93, which inhibit the production motaxis requires the formation of one prominent pseudopod at the of PIP3, respond to chemoattractants by forming multiple pseu- cell front characterized by actin polymerization, while local inhibition dopods, whereas neutrophils treated with the class IA PI3K suppresses the formation of rear and lateral protrusions. This asym- inhibitors polarize normally (3). Furthermore, neutrophils from metric control of signaling pathways is required for directional mi- p110␥ knockout mice exhibit both defective chemotaxis in vitro gration along a chemotactic gradient. Here, we identify the MAGUK and reduced accumulation in the peritoneal cavity in response to protein p55/MPP1 as a mediator of the frontness signal required for inflammatory stimuli in vivo (8–11). This evidence indicates that neutrophil polarization. We developed a p55 knockout (p55؊/؊) stimulation of PI3K␥ causes a rapid increase in the accumulation ؊/؊ mouse model, and demonstrate that p55 neutrophils form multi- of PIP3, which in turn drives pseudopod formation, thus main- ple transient pseudopods upon chemotactic stimulation, and do not taining neutrophil polarity.
    [Show full text]
  • Erythrocyte Scaffolding Protein P55/MPP1 Functions As an Essential Regulator of Neutrophil Polarity
    Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity Brendan J. Quinna, Emily J. Welcha, Anthony C. Kima, Mary A. Lokutab,1, Anna Huttenlocherb, Anwar A. Khana, Shafi M. Kuchaya, and Athar H. Chishtia,2 aDepartment of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and bDepartments of Pediatrics and Pharmacology, University of Wisconsin, Madison, WI 53706 Edited by Henry R. Bourne, University of California, San Francisco, CA, and approved September 16, 2009 (received for review June 23, 2009) As mediators of innate immunity, neutrophils respond to chemoat- p85/p110 in immunoprecipitates (7). Neutrophils treated with tractants by adopting a highly polarized morphology. Efficient che- the PI3K␥ inhibitors PIK-90 or -93, which inhibit the production motaxis requires the formation of one prominent pseudopod at the of PIP3, respond to chemoattractants by forming multiple pseu- cell front characterized by actin polymerization, while local inhibition dopods, whereas neutrophils treated with the class IA PI3K suppresses the formation of rear and lateral protrusions. This asym- inhibitors polarize normally (3). Furthermore, neutrophils from metric control of signaling pathways is required for directional mi- p110␥ knockout mice exhibit both defective chemotaxis in vitro gration along a chemotactic gradient. Here, we identify the MAGUK and reduced accumulation in the peritoneal cavity in response to protein p55/MPP1 as a mediator of the frontness signal required for inflammatory stimuli in vivo (8–11). This evidence indicates that neutrophil polarization. We developed a p55 knockout (p55؊/؊) stimulation of PI3K␥ causes a rapid increase in the accumulation ؊/؊ mouse model, and demonstrate that p55 neutrophils form multi- of PIP3, which in turn drives pseudopod formation, thus main- ple transient pseudopods upon chemotactic stimulation, and do not taining neutrophil polarity.
    [Show full text]
  • Structures of the Human Pals1 PDZ Domain with and Without Ligand Suggest Gated Access of Crb to the PDZ Peptide-Binding Groove ISSN 1399-0047
    research papers Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove ISSN 1399-0047 Marina E. Ivanova,a Georgina C. Fletcher,b Nicola O’Reilly,c Andrew G. Purkiss,a Barry J. Thompsonb and Neil Q. McDonalda,d* Received 9 October 2014 aStructural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England, bEpithelial Accepted 19 December 2014 Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England, cPeptide Chemistry Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England, and dInstitute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England. *Correspondence e-mail: [email protected] Keywords: PDZ domains; Crb; cell polarity; epithelia; stardust. Many components of epithelial polarity protein complexes possess PDZ PDB references: PDZ–peptide complex, 4uu5; domains that are required for protein interaction and recruitment to the apical ligand-free PDZ domain, 4uu6 plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated Supporting information: this article has with Lin7, Stardust, MPP5), a member of the p55 family of membrane- supporting information at journals.iucr.org/d associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions.
    [Show full text]
  • Anti-MPP6 Monoclonal Antibody, Clone FQS25268(C) (DCABH-6840) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-MPP6 monoclonal antibody, clone FQS25268(C) (DCABH-6840) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to VAM1 Antigen Description Members of the peripheral membrane-associated guanylate kinase (MAGUK) family function in tumor suppression and receptor clustering by forming multiprotein complexes containing distinct sets of transmembrane, cytoskeletal, and cytoplasmic signaling proteins. All MAGUKs contain a PDZ-SH3-GUK core and are divided into 4 subfamilies, DLG-like (see DLG1; MIM 601014), ZO1-like (see TJP1; MIM 601009), p55-like (see MPP1; MIM 305360), and LIN2-like (see CASK; MIM 300172), based on their size and the presence of additional domains. MPP6 is a member of the p55-like MAGUK subfamily Immunogen Synthetic peptide (the amino acid sequence is considered to be commercially sensitive) within Human VAM1 aa 1-100. The exact sequence is proprietary.Database link: Q9NZW5 Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Rat, Human Clone FQS25268(C) Purity Tissue culture supernatant Conjugate Unconjugated Applications WB, IP Positive Control 293, HepG2, NTERA2/D1 and Human fetal brain lysates. Format Liquid Size 100 μl Buffer Preservative: 0.01% Sodium azide; Constituents: 59% PBS, 40% Glycerol, 0.05% BSA Preservative 0.01% Sodium Azide Storage Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C long term. Avoid freeze / thaw cycle. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Ship Shipped at 4°C.
    [Show full text]
  • Integrated Functional Genomic Analyses of Klinefelter and Turner Syndromes Reveal Global Network Effects of Altered X Chromosome Dosage
    Integrated functional genomic analyses of Klinefelter and Turner syndromes reveal global network effects of altered X chromosome dosage Xianglong Zhanga,b,1, David Honga,1,2, Shining Mac,d,1, Thomas Warda,b, Marcus Hoa,b, Reenal Pattnia,b, Zhana Durenc,d, Atanas Stankova, Sharon Bade Shresthaa, Joachim Hallmayera, Wing Hung Wongc,d,2, Allan L. Reissa,2, and Alexander E. Urbana,b,2 aDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Genetics, Stanford University School of Medicine, Stanford, CA 94305; cDepartment of Statistics, Stanford University, Stanford, CA 94305; and dDepartment of Biomedical Data Science, Stanford University, Stanford, CA 94305 Contributed by Wing Hung Wong, January 16, 2020 (sent for review June 20, 2019; reviewed by Carolyn J. Brown and Joseph F. Cubells) In both Turner syndrome (TS) and Klinefelter syndrome (KS) copy with short stature in TS (4) and tall stature in KS (5). X-chromosome number aberrations of the X chromosome lead to various develop- inactivation (XCI) transcriptionally silences one X chromosome mental symptoms. We report a comparative analysis of TS vs. KS in female mammals; as such, most genes on the inactivated X regarding differences at the genomic network level measured in chromosome are silenced and inactive (hereinafter referred to as primary samples by analyzing gene expression, DNA methylation, inactive genes). However, some genes escape XCI (hereinafter and chromatin conformation. X-chromosome inactivation (XCI) referred to as escape genes) and have also been hypothesized to silences transcription from one X chromosome in female mammals, contribute to the phenotypes of SCAs (6, 7).
    [Show full text]
  • Structure and Function of the Guanylate Kinase-Like Domain of the MAGUK Family Scaffold Proteins
    Front. Biol. 2012, 7(5): 379–396 DOI 10.1007/s11515-012-1244-9 REVIEW Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins Jinwei ZHU1, Yuan SHANG1, Jia CHEN1, Mingjie ZHANG (✉)1,2 1 Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 2 Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China © Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 Abstract Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular signal transduction. Every member of the MAGUK family contains a guanylate kinase-like (GK) domain, which has evolved from the enzyme catalyzing GMP to GDP conversion to become a protein–protein interaction module with no enzymatic activity. Mutations of MAGUKs are linked to a number of human diseases, including autism and hereditary deafness. In this review, we summarize the structural basis governing cellular function of various members of the MAGUKs. In particular, we focus on recent discoveries of MAGUK GKs as specific phospho-protein interaction modules, and discuss functional implications and connections to human diseases of such regulated MAGUK GK/target interactions. Keywords MAGUK, GK domain, phospho-protein interaction module, synapse, neuronal disease Introduction 2004; Funke et al., 2005; Zheng et al., 2011; Oliva et al., 2012); Zonula Occludens (ZO) subfamily proteins act as Membrane-associated guanylate kinases (MAGUKs) origin- molecular linkers between tight junction proteins and actin ally referred to a family of scaffold proteins highly cytoskeletons (González-Mariscal et al., 2000); calcium/ concentrated at the sites of cell-cell junctions (Woods and calmodulin-dependent protein kinase (CASK) mainly loca- Bryant, 1993; Anderson, 1996; Funke et al., 2005).
    [Show full text]