Efficacy and Safety of the Cholesteryl Ester Transfer Protein Inhibitor

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy and Safety of the Cholesteryl Ester Transfer Protein Inhibitor Circ J 2018; 82: 183 – 191 ORIGINAL ARTICLE doi: 10.1253/circj.CJ-16-1324 Ischemic Heart Disease Efficacy and Safety of the Cholesteryl Ester Transfer Protein Inhibitor Evacetrapib in Combination With Atorvastatin in Japanese Patients With Primary Hypercholesterolemia Tamio Teramoto, MD, PhD; Arihiro Kiyosue, MD, PhD; Takeshi Iimura, MD; Yasushi Takita; Jeffrey S. Riesmeyer, MD; Masahiro Murakami, MD, PhD Background: Inhibition of cholesteryl ester transfer protein by evacetrapib when added to atorvastatin may provide an additional treatment option for patients who do not reach their low-density lipoprotein cholesterol (LDL-C) goal. Methods and Results: This multicenter, randomized, 12-week, double-blind, parallel-group, placebo-controlled, outpatient, phase 3 study evaluated the efficacy of evacetrapib with atorvastatin in reducing LDL-C in 149 Japanese patients (evacetrapib/atorvastatin, n=53; ezetimibe/atorvastatin, n=50; placebo/atorvastatin, n=46) with primary hypercholesterolemia. The primary efficacy measure was percent change from baseline to week 12 in LDL-C (β quantification). Treatment with evacetrapib 130 mg daily for 12 weeks resulted in a statistically significant treatment difference of −25.70% compared with placebo in percentage decrease in LDL-C (95% CI: −34.73 to −16.68; P<0.001). Treatment with evacetrapib 130 mg also resulted in a statistically significant difference of 126.39% in the change in high-density lipoprotein cholesterol (HDL-C) compared with placebo (95% CI: 113.54–139.24; P<0.001). No deaths or serious adverse events were reported. Four patients (3 in the evacetrapib group and 1 in the ezetimibe group) discontinued due to adverse events. Conclusions: Evacetrapib daily in combination with atorvastatin was superior to placebo in lowering LDL-C after 12 weeks, and resulted in a statistically significant increase of HDL-C compared with placebo. Also, no new safety risks were identified. Key Words: Cholesteryl ester transfer protein inhibitor; Evacetrapib; High-density lipoprotein; Hypercholesterolemia; Low-density lipoprotein he use of 3-hydroxy-3-methyl-glutaryl-coenzyme A the hazard ratio for total CAD increases 1.4-, 1.7-, 2.2-, and reductase inhibitors (statins) to reduce low-density 2.8-fold when LDL-C is 2.06–2.57, 2.58–3.09, 3.10–3.61, lipoprotein cholesterol (LDL-C) has resulted in and ≥3.62 mmol/L, respectively, compared with LDL-C T 5 relative reductions in cardiovascular events of 20–30%. As <2.06 mmol/L. a result, current guidelines for dyslipidemia management Cholesteryl ester transfer protein (CETP) is a plasma and prevention of atherosclerotic cardiovascular diseases glycoprotein secreted primarily by the liver that mediates recommend reducing LDL-C.1–3 the transfer of cholesteryl ester (CE) from high-density Although LDL-C management has provided significant lipoprotein (HDL) to apolipoprotein (apo)B-rich lipopro- clinical benefits, atherosclerosis remains a major health teins (Lp; i.e., very-low-density lipoprotein [VLDL] and burden in Japan, where the relative risk of coronary artery LDL) in exchange for their triglycerides, as well as the disease (CAD) has been confirmed by epidemiological transfer of triglycerides/CE between apo-B-rich lipopro- studies to increase in tandem with LDL-C and total teins. Inhibition of CETP represents a potent mechanism cholesterol (TC). The NIPPON DATA 80 study showed for increasing HDL cholesterol (HDL-C) and lowering that the relative risk of death due to CAD increases 1.4-, LDL-C. There is evidence that CETP inhibition prevents 1.7-, 1.8-, and 3.8-fold when TC is 5.18–5.68, 5.69–6.20, transfer of CE from HDL-C to apoB-containing lipopro- 6.21–6.70, and ≥6.71 mmol/L, respectively, compared with teins and may increase cholesterol efflux.6–8 The majority of TC 4.14–4.65 mmol/L, for men and women combined.4 A animal model data indicate that CETP is proatherogenic, more recent Japanese epidemiological study reported that supporting an anti-atherogenic effect of CETP inhibitors.8,9 Received January 9, 2017; revised manuscript received May 1, 2017; accepted June 21, 2017; released online August 3, 2017 Time for primary review: 31 days Teikyo Academic Research Center, Teikyo University, Tokyo (T.T.); Tokyo-Eki Center-building Clinic, Tokyo (A.K.); Department of Cardiovascular Medicine, University of Tokyo Hospital, Tokyo (A.K.); Eli Lilly Japan, Kobe (T.I., Y.T.), Japan; and Eli Lilly and Company, Indianapolis, IN (J.S.R., M.M.), USA Present address: Elsevier Japan, Tokyo, Japan (T.I.). Mailing address: Masahiro Murakami, MD, PhD, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA. E-mail: [email protected] ISSN-1346-9843 All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: [email protected] Circulation Journal Vol.82, January 2018 184 TERAMOTO T et al. Evacetrapib is a potent and selective CETP inhibitor. vascular disease,20 be terminated due to futility. The decision The effect of evacetrapib on LDL-C reduction has been was not based on safety concerns. As a consequence of evaluated in 2 phase 2 studies. A phase 2 study conducted these results, all ongoing studies of evacetrapib, including outside Japan noted a 22.3% decrease in LDL-C in patients this study, were terminated by the sponsor.21 treated with evacetrapib 100 mg alone, and a 47.6% decrease when evacetrapib 100 mg was used with 20 mg atorvas- Methods tatin.10 Similarly, a phase 2 study in Japanese patients noted a 22% reduction in LDL-C in patients treated with This was a multicenter, randomized, 12-week double- evacetrapib 100 mg alone, and a 52% decrease when blind, parallel-group, placebo-controlled, phase 3 study evacetrapib 100 mg was used with 10 mg atorvastatin. The (ClinicalTrials.gov: NCT02260648), with 3 consecutive safety data on evacetrapib 30, 100, and 500 mg demon- periods (screening period; diet lead-in and washout period; strated that evacetrapib was safe and well tolerated.11 and a 12-week, double-blind treatment period). Drugs that are added to statin therapy for the treatment The study was performed in accordance with the Inter- of hypercholesterolemia and prevention of atherosclerotic national Conference on Harmonisation guidelines for cardiovascular disease include fibrates, resins (anion Good Clinical Practice, all applicable laws, rules, and exchange resin), ezetimibe, and proprotein convertase regulations. The protocol was approved by the ethics review subtilisin kexin type 9 (PCSK9) monoclonal antibodies. board of each participating study center, and all patients Statin use is accompanied by an increase in PCSK9, leading provided written informed consent. to lysosomal degradation of the LDL receptor. This may Study treatment included evacetrapib 130 mg QD, ezeti- explain the observation that doubling the statin dose results mibe 10 mg QD, and placebo added to background therapy in only a 6% additional reduction in LDL-C.12 Ezetimibe of atorvastatin 10 mg. Before screening, patients were is often used as a first-line drug for statin-intolerant asked to fast for at least 8 h before laboratory samples were patients. In patients requiring a more vigorous reduction collected for central measurement and other screening in LDL-C, ezetimibe is frequently used. The reduction of assessments were performed. All eligible patients were LDL-C with ezetimibe 10 mg in patients with hypercholes- asked to begin the diet lead-in and washout period within terolemia is approximately 18%.13,14 With regard to the 2 weeks of the screening visit. Patients taking lipid- effect of ezetimibe in combination with statins, a post- modifying medication such as ezetimibe, bile acid seques- marketing clinical study in Japan showed that after treat- trant, eicosapentaenoic acid, and docosahexaenoic acid ment with ezetimibe 10 mg in patients who were receiving (except for atorvastatin 10 mg) were instructed to discon- atorvastatin 10 mg, LDL-C decreased by approximately tinue lipid-modifying medication during the washout period 26%.15 The IMPROVE-IT study showed that the addition for 4 weeks before their first treatment visit. Patients were of ezetimibe to simvastatin 40 mg resulted in an additional also instructed to start a diet therapy in accordance with 6% reduction in the relative risk of major adverse cardiac Japan Atherosclerosis Society (JAS) guidelines3 during the events.16 We have chosen to use ezetimibe as a reference washout period in order to evaluate lipid levels under the drug in this study to better characterize the clinical posi- diet therapy, and to minimize the effect of diet on lipid tioning of evacetrapib as an LDL-C-lowering drug. values throughout the study period. Diet therapy was to Atorvastatin is one of the statins most commonly used continue throughout the study. around the world, with a wealth of evidence on reducing Patients who completed the diet lead-in and washout the risk of cardiovascular events.17,18 A systematic review period and met all enrollment criteria were randomized to and meta-analysis showed that LDL-C decreased by 28.9– a treatment group (evacetrapib 130 mg QD, ezetimibe 42.0% with atorvastatin 10 mg once daily (QD).18 For 10 mg QD, or placebo) in a 1:1:1 ratio. Randomization was Japanese patients with hypercholesterolemia, atorvastatin performed at each investigative site using an interactive 10 mg QD is a standard dosage regimen.19 A phase 2 study Web response system. Once treatment began during the in Japanese patients showed an additive reduction in 12-week double-blind treatment
Recommended publications
  • Dysfunctional High-Density Lipoproteins in Type 2 Diabetes Mellitus: Molecular Mechanisms and Therapeutic Implications
    Journal of Clinical Medicine Review Dysfunctional High-Density Lipoproteins in Type 2 Diabetes Mellitus: Molecular Mechanisms and Therapeutic Implications Isabella Bonilha 1 , Francesca Zimetti 2,* , Ilaria Zanotti 2 , Bianca Papotti 2 and Andrei C. Sposito 1,* 1 Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Department, State University of Campinas (Unicamp), Campinas 13084-971, Brazil; [email protected] 2 Department of Food and Drug, University of Parma, 43124 Parma, Italy; [email protected] (I.Z.); [email protected] (B.P.) * Correspondence: [email protected] (F.Z.); [email protected] (A.C.S.); Tel.: +39-05-2190-6172 (F.Z.); +55-19-3521-7098 (A.C.S.); Fax: +55-1-9328-9410 (A.C.S.) Abstract: High density lipoproteins (HDLs) are commonly known for their anti-atherogenic prop- erties that include functions such as the promotion of cholesterol efflux and reverse cholesterol transport, as well as antioxidant and anti-inflammatory activities. However, because of some chronic inflammatory diseases, such as type 2 diabetes mellitus (T2DM), significant changes occur in HDLs in terms of both structure and composition. These alterations lead to the loss of HDLs’ physiological functions, to transformation into dysfunctional lipoproteins, and to increased risk of cardiovascular disease (CVD). In this review, we describe the main HDL structural/functional alterations observed in T2DM and the molecular mechanisms involved in these T2DM-derived modifications. Finally, the main available therapeutic interventions targeting HDL in diabetes are discussed. Citation: Bonilha, I.; Zimetti, F.; Keywords: high density lipoprotein; type 2 diabetes mellitus; HDL function; glycation; oxidation; Zanotti, I.; Papotti, B.; Sposito, A.C.
    [Show full text]
  • Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: the Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol
    Diabetes Volume 65, July 2016 1767 Changting Xiao,1 Satya Dash,1 Cecilia Morgantini,1 Robert A. Hegele,2 and Gary F. Lewis1 Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol Diabetes 2016;65:1767–1778 | DOI: 10.2337/db16-0046 Notwithstanding the effectiveness of lowering LDL cho- has been the primary goal of dyslipidemia management, lesterol, residual CVD risk remains in high-risk popula- with statins as the treatment of choice for CVD prevention. tions, including patients with diabetes, likely contributed Large-scale, randomized, clinical trials of LDL-lowering PERSPECTIVES IN DIABETES to by non-LDL lipid abnormalities. In this Perspectives therapies have demonstrated significant reduction in CVD in Diabetes article, we emphasize that changing demo- events over a wide range of baseline LDL-C levels (2,3). graphics and lifestyles over the past few decades have However, even with LDL-C levels lowered substantially or “ resulted in an epidemic of the atherogenic dyslipidemia at treatment goals with statin therapy, CVD risks are not ” complex, the main features of which include hypertrigly- eliminated and there remains significant “residual risk.” In- ceridemia, low HDL cholesterol levels, qualitative changes tensifying statin therapy may provide additional benefits in LDL particles, accumulation of remnant lipoproteins, (4,5); this approach, however, has limited potential, owing and postprandial hyperlipidemia. We brieflyreviewthe to tolerability, side effects, and finite efficacy. Further LDL-C underlying pathophysiology of this form of dyslipidemia, lowering may also be achieved with the use of nonstatin in particular its association with insulin resistance, obe- sity, and type 2 diabetes, and the marked atherogenicity agents, such as cholesterol absorption inhibitors and PCSK9 of this condition.
    [Show full text]
  • Effect of Evacetrapib on Cardiovascular Outcomes in Patients with High-Risk Cardiovascular Disease
    Touro Scholar NYMC Faculty Publications Faculty 7-1-2017 Effect of Evacetrapib on Cardiovascular Outcomes in Patients with High-risk Cardiovascular Disease Wilbert S. Aronow New York Medical College Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_pubs Part of the Cardiology Commons, and the Cardiovascular Diseases Commons Recommended Citation Aronow, W. S. (2017). Effect of Evacetrapib on Cardiovascular Outcomes in Patients with High-risk Cardiovascular Disease. Journal of Thoracic Disease, 9 (7), 1822-1825. https://doi.org/10.21037/ jtd.2017.06.106 This Editorial is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Publications by an authorized administrator of Touro Scholar. For more information, please contact [email protected]. 1825 Editorial Effect of evacetrapib on cardiovascular outcomes in patients with high-risk cardiovascular disease Wilbert S. Aronow Department of Medicine, Division of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY, USA Correspondence to: Wilbert S. Aronow, MD, FACC, FAHA. Professor of Medicine, Cardiology Division, Westchester Medical Center and New York Medical College, Macy Pavilion, Room 141, Valhalla, NY 10595, USA. Email: [email protected]. Provenance: This is an invited Editorial commissioned by Section Editor Dr. Hai-Long Dai (Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China). Comment on: Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N Engl J Med 2017;376:1933-42. Submitted Jun 12, 2017. Accepted for publication Jun 13, 2017.
    [Show full text]
  • Statin + Ezetimibe : ENHANCE, SHARP • Statin + Niacin : AIM-HIGH, HPS2-THRIVE • Statin + Fenofibrate : ACCORD Lipid Stain Vs
    Need for Additional Emerging Targets? Ultimate Goal for Lipid Management Bum-Kee Hong Cardiology Heart Center Yonsei Universityyg College of Medicine Seoul, Korea As you know , there are many concrete beneficial evidences of LDL -lowering statin therapy!!! LDL-C Lowering & Benefit of Statins CTT Meta-Analysis CTT 2005 1 CTT 2010 2 CTT 2012 3 Number of analyzed trials 14 (90,056) 26 (169,138) 27 (174,149) (Number of patients) More vs. Less intensive statin Statin vs. Comparison Statin vs. Control Stain/More vs. Control/Less Control Stain/More vs. Control/Less Classified based on 5-year major vascular event (MVE) risk at No No Yes baseline More vs. Less intensive statin: 28% Data according to 5-year MVE Reduction of MVE risk 21% Statin vs. Control: 21% risk per 1 mmol/L reduction of LDL-C* *LDL-C: 1 mmol/L=38.61mg/dL Stain/More vs. Control/Less: 1.(Next Lancet page) 2005;366:1267-78 22% 2. Lancet 2010;376:1670-81 3. Lancet 2010;380:581-90 CTT Meta-Analysis from CTT 2012 MVE at Difference Risk Levels However, there is still CV risk despite the use of aggressive statin therapy... What Is Residual Cardiovascular Risk? Statin trials show many patients at LDL-C goal have high “idl”“residual” CHD rikisk1. Statins reduce risk by about 30% compared with controls, but many patients still have events due to residual risk2-4. More intensive treatment directed to other targets as well as LDL-C is needed in addition to statin monotherapy to reduce residual risk effectively.
    [Show full text]
  • Articles Article: Non-Statin Treatments for Managing LDL Cholesterol and Their Outcomes Download
    Clinical Therapeutics/Volume 37, Number 12, 2015 Review Article Non-statin Treatments for Managing LDL Cholesterol and Their Outcomes Traci Turner, MD; and Evan A. Stein, MD, PhD Metabolic & Atherosclerosis Research Center, Cincinnati, Ohio ABSTRACT agents are being developed as orphan indications ex- Purpose: Over the past 3 decades reducing LDL-C pressly for patients with homozygous familial hyper- has proven to be the most reliable and easily achiev- cholesterolemia, including peroxisome proliferator able modifiable risk factor to decrease the rate of activated receptor-δ agonists, angiopoietin-like protein 3 cardiovascular morbidity and mortality. Statins are inhibitors, and gene therapy. effective, but problems with their side effects, adher- Implications: Monoclonal antibodies that inhibit ence, or LDL-C efficacy in some patient groups PCSK9 were shown to be very effective reducers of remain. Most currently available alternative lipid- LDL-C and well tolerated despite subcutaneous ad- modifying therapies have limited efficacy or tolerabil- ministration, and no significant safety issues have yet ity, and additional effective pharmacologic modalities emerged during large Phase II and III trials. They have to reduce LDL-C are needed. the potential to substantially impact further the risk of Methods: Recent literature on new and evolving cardiovascular disease. A number of additional new, LDL-C–lowering modalities in preclinical and clinical but less effective, oral LDL-C–lowering agents are development was reviewed. also in various stages of development, including Findings: Several new therapies targeting LDL-C are some which are targeted only to patients with homo- in development. Inhibition of proprotein convertase sub- zygous familial hypercholesterolemia. (Clin Ther.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Study Protocol 1002-046 Amendment 1, 10 April 2017
    1. TITLE PAGE BEMPEDOIC ACID 1002-046 A RANDOMIZED, DOUBLE-BLIND, PARALLEL GROUP, MULTICENTER STUDY TO EVALUATE THE EFFICACY AND SAFETY OF BEMPEDOIC ACID (ETC-1002) 180 MG COMPARED TO PLACEBO ADDED TO BACKGROUND LIPID-MODIFYING THERAPY IN PATIENTS WITH ELEVATED LDL-C WHO ARE STATIN INTOLERANT Study Phase: 3 IND Number: 106654 EudraCT Number: NA Indication: Treatment of hyperlipidemia Investigators: Approximately 71 sites located in North America Sponsor: Esperion Therapeutics, Inc. 3891 Ranchero Drive, Suite 150 Ann Arbor, MI 48108 Phone: 734-862-4840 Fax: 734-582-9720 Sponsor Contact: Medical Monitor: Version Date Original Protocol: 25 August 2016 Amendment 1: 10 April 2017 Confidentiality Statement THIS CONFIDENTIAL INFORMATION IS ABOUT AN INVESTIGATIONAL DRUG PROVIDED FOR THE EXCLUSIVE USE OF INVESTIGATORS OF THIS DRUG AND IS SUBJECT TO RECALL AT ANY TIME. THE INFORMATION IN THIS DOCUMENT MAY NOT BE DISCLOSED UNLESS SUCH DISCLOSURE IS REQUIRED BY FEDERAL OR STATE LAW OR REGULATIONS. SUBJECT TO THE FOREGOING, THIS INFORMATION MAY BE DISCLOSED ONLY TO THOSE PERSONS INVOLVED IN THE STUDY WHO HAVE NEED TO KNOW, WITH THE OBLIGATION NOT TO FURTHER DISSEMINATE THIS INFORMATION. THESE RESTRICTIONS ON DISCLOSURE WILL APPLY EQUALLY TO ALL FUTURE ORAL OR WRITTEN INFORMATION, SUPPLIED TO YOU BY ESPERION THERAPEUTICS, INC., WHICH IS DESIGNATED AS “PRIVILEGED” OR “CONFIDENTIAL. NCT number: NCT02988115 This NCT number has been applied to the document for purposes of posting on clinicaltrials.gov Confidential Page 1 of 153 Bempedoic Acid Esperion Therapeutics, Inc. Clinical Study Protocol 1002-046 Amendment 1, 10 April 2017 2. SYNOPSIS Name of Sponsor: Esperion Therapeutics, Inc.
    [Show full text]
  • Old and New in Lipid Lowering Therapy: Focus on The
    FARMACIA, 2014, Vol. 62, 5 811 OLD AND NEW IN LIPID LOWERING THERAPY: FOCUS ON THE EMERGING DRUGS DANIELA BARTOȘ, CAMELIA DIACONU, ELISABETA BĂDILĂ*, ANA MARIA DARABAN University of Medicine and Pharmacy Carol Davila, Internal Medicine Clinic, Clinical Emergency Hospital of Bucharest, România * corresponding author: [email protected] Abstract The link between cholesterol and atherosclerosis has been long known. Studies on HDL (high density lipoprotein) cholesterol showed that it has two important roles: one in the transport of cholesterol and another directly on vascular endothelium, with a protective action and potential anti-atherogenic effects. Statins are the most common lipid- lowering drugs. Other drugs used in the treatment dyslipidemia are bile acid sequestrants, nicotinic acid, ezetimibe, probucol, neomycin, and fibrates. Because the response to treatment is not always satisfactory, new classes of drugs with different mechanisms of action have been developed in the latest years. Rezumat Legătura dintre colesterol şi ateroscleroză este de mult timp cunoscută. Studiile efectuate asupra HDL-colesterolului (high density lipoprotein) au arătat două roluri importante: unul asupra transportului de colesterol şi altul direct asupra endoteliului vascular, având o acţiune protectoare şi cu efecte potenţial anti-aterogene. Statinele sunt cele mai cunoscute medicamente hipolipemiante. Alte categorii de medicamente folosite în tratamentul dislipidemiilor sunt: sechestranţii de acizi biliari, acidul nicotinic, ezetimib, probucol, neomicina, fibraţii. Deoarece răspunsul la tratament nu este totdeauna satisfăcător, în ultimii ani au fost introduse în terapie noi clase de medicamente hipolipemiante, cu mecanisme de acţiune diferite faţă de cele cunoscute până acum. Keywords: dislipidemia, new lipid lowering drugs. Introduction In 1910, the German researchers have drawn attention to the link between cholesterol and atherosclerosis.
    [Show full text]
  • Effect of CETP Inhibition with Evacetrapib in Patients with Diabetes Mellitus Enrolled in the ACCELERATE Trial
    Cardiovascular and Metabolic Risk BMJ Open Diab Res Care: first published as 10.1136/bmjdrc-2019-000943 on 15 March 2020. Downloaded from Open access Original research Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial Venu Menon ,1 Anirudh Kumar ,1 Divyang R Patel,1 Julie St John,1 Jeffrey Riesmeyer,2 Govinda Weerakkody,2 Giacomo Ruotolo,2 Kathy E Wolski,1 Ellen McErlean,1 Paul C Cremer,1 Stephen J Nicholls,3 A Michael Lincoff,1 Steven E Nissen1 To cite: Menon V, Kumar A, ABSTRACT Patel DR, et al. Effect of CETP Background High- density lipoprotein (HDL) levels are Significance of this study inhibition with evacetrapib in inversely associated with cardiovascular risk. Cholesteryl patients with diabetes mellitus ester transfer protein inhibition with evacetrapib results What is already known about this subject? enrolled in the ACCELERATE in a marked increase in HDL and reduction in low- density ► Despite contemporary optimal medical therapy, pa- trial. BMJ Open Diab Res Care lipoprotein (LDL) levels. We evaluated the impact of tients with diabetes remain at elevated risk for car- 2020;8:e000943. doi:10.1136/ diovascular events compared with their counterparts bmjdrc-2019-000943 treatment with evacetrapib versus placebo in the subset of 8236 patients with diabetes mellitus (DM) enrolled in the without diabetes. As such, they are important targets Assessment of Clinical Effects of Cholesteryl Ester Transfer for novel agents which may mitigate cardiovascular ► Additional material is Protein Inhibition with Evacetrapib in Patients at a High risk. published online only. To view Risk for Vascular Outcomes trial.
    [Show full text]
  • Endocrinologic and Metabolic Drugs Advisory Committee Briefing Document
    ENDOCRINOLOGIC AND METABOLIC DRUGS ADVISORY COMMITTEE BRIEFING DOCUMENT Vascepa® (icosapent ethyl; AMR101) REDUCE-IT® (Reduction of Cardiovascular Events with EPA – Intervention Trial) NDA Number: 202057 Applicant: Amarin Pharmaceuticals Ireland Limited Date: 14 November 2019 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE Amarin Pharmaceuticals Ireland Limited Advisory Committee Briefing Document 1 EXECUTIVE SUMMARY 1.1 Introduction Amarin Pharmaceuticals Ireland Limited (hereafter referred to as Amarin or the Sponsor) submitted a supplemental New Drug Application (sNDA) on 28 March 2019, providing results from the Reduction of Cardiovascular Events with EPA – Intervention Trial (REDUCE-IT) to extend the indicated use of Vascepa® (icosapent ethyl) to include the prevention of cardiovascular (CV) events in statin-treated patients with controlled (≤100 mg/dL) low-density lipoprotein cholesterol (LDL-C), but elevated (≥135 mg/dL) triglyceride (TG) levels and other cardiovascular disease (CVD) risk factors. REDUCE-IT was conducted under a United States (US) Food and Drug Administration (FDA) Special Protocol Assessment (SPA) agreement. Development, finalization and amendment of this SPA agreement included FDA input and agreement on critical study design features; regulatory scientific dialogue with FDA included such topics as prespecified endpoints, the statistical testing hierarchy as captured in the protocol and statistical analysis plan (SAP), and the selection of placebo. This briefing document outlines the key results from REDUCE-IT and provides background information for discussion of the trial results at the Endocrinologic and Metabolic Drugs Advisory Committee (EMDAC) meeting scheduled for 14 November 2019. This briefing document was prepared by Amarin prior to release of the FDA briefing book or the question(s) within.
    [Show full text]
  • Lipidology Trials - What’S New and What’S in the Pipeline?
    Lipidology Trials - What’s New and What’s in the Pipeline? Professor Basil S. Lewis, MD, FRCP, FACC, FESC Past Chairman, WG on Cardiovascular Pharmacotherapy European Society of Cardiology SUPPORTED BY AN EDUCATIONAL GRANT FROM AMGEN and NOVARTIS Declaration of Conflict Of Interest I have the following potential conflict(s) of interest to report Type of affiliation / financial interest Name of commercial company Receipt of grants/research support: AstraZeneca, Bayer Healthcare, MSD, Resverlogix, KOWA, Pfizer Receipt of honoraria or consultation fees: Bayer Healthcare, MSD, Pfizer, Novo Nordisk Participation in a company sponsored Pfizer, Novo Nordisk speaker’s bureau: Challenges in Lipidology Trials • What is the pathophysiology? • What are the targets? • LDL? HDL? TG? LP(a)? • Relation between lipidology, atherosclerosis and CV events? • Time discrepancies? • What are the end-points? • Surrogate endpoints? Plasma lipids? Plaque volume? Extent of disease? • Can these guide in early/late phases of drug development? • Outcome events – This is what matters! • What is the comparator? • Keeping pace with a rapidly evolving field Targets • Targeting LDL • PCSK9 Inhibitors (FOURIER, SPIRE, ODYSSEY) • RNA interference (RNAi) to reduce PCSK9 (ORION) • Decreasing LDL synthesis - Bempedoic acid • Targeting HDL • CETP inhibitors • Epigenetics - BET on MACE program • Apo-A1 infusion – AEGIS program • Targeting triglycerides • REDUCE-IT • PROMINENT • New - Targeting ANGPTL3 (inh of lipoprotein lipase) IMPROVE-IT - Proves again the LDL Hypothesis IMPROVE-IT
    [Show full text]