Shoreline Environment Designations, Policies and Regulations

Total Page:16

File Type:pdf, Size:1020Kb

Shoreline Environment Designations, Policies and Regulations Exhibit A Amended Ordinance No. 12-025 Snohomish County Shoreline Management Program: Shoreline Environment Designations, Policies and Regulations Snohomish County Planning and Development Services Approved by Washington State Department of Ecology July 13, 2012 Effective Date: July 27, 2012 Snohomish County Shoreline Management Program: Page 2 of 177 Shoreline Environment Designations, Policies and Regulations Approved by Washington State Department of Ecology, effective on July 27, 2012 Table of Contents 1. INTRODUCTION ........................................................................................................................................... 5 1.1 SHORELINE MANAGEMENT ACT .................................................................................................................. 5 1.2 SNOHOMISH COUNTY’S SHORELINE MANAGEMENT PROGRAM ................................................................... 5 1.2.1 Snohomish County Shoreline Jurisdiction ................................................................................ 5 1.2.1.1 List of Shorelines in Snohomish County ........................................................................................ 6 1.2.2 Shorelines of Statewide Significance ........................................................................................ 9 1.2.2.1 Management Principles and Development Guidelines .............................................................. 10 1.2.3 Components of Snohomish County’s SMP ............................................................................ 11 1.2.4 SMP Elements ............................................................................................................................ 14 1.2.4.1 Conservation and Monitoring Element ......................................................................................... 14 1.2.4.2 Cultural, Archaeological and Historic Element ............................................................................ 16 1.2.5 SMP Updates and Amendments ............................................................................................. 17 2. DESIGNATION OF SHORELINE ENVIRONMENTS ............................................................................ 18 2.1 SHORELINE ENVIRONMENT DESIGNATION PROCESS .................................................................................. 18 2.1.1 Inventory of Ecological Functions and Conditions ................................................................ 19 2.1.1.1 Restoration of Shoreline Ecological Functions ............................................................................ 20 2.1.2 Land Use Patterns ..................................................................................................................... 20 2.2 ENVIRONMENT-SPECIFIC POLICIES & DESIGNATION CRITERIA ................................................................. 22 2.2.1 Aquatic ........................................................................................................................................ 22 2.2.2 Natural ........................................................................................................................................ 23 2.2.3 Resource .................................................................................................................................... 25 2.2.4 Municipal Watershed Utility ..................................................................................................... 26 2.2.5 Rural Conservancy ................................................................................................................... 27 2.2.6 Urban Conservancy .................................................................................................................. 28 2.2.7 Urban .......................................................................................................................................... 29 2.3 ALTERNATIVE ENVIRONMENT DESIGNATION SYSTEM ............................................................................. 31 2.4 SHORELINE ENVIRONMENT DESIGNATION MAPS ..................................................................................... 33 2.5 TULALIP INDIAN RESERVATION................................................................................................................ 33 3. SHORELINE GOALS, POLICIES AND REGULATIONS...................................................................... 35 3.1 INTRODUCTION: STATE REQUIREMENTS .................................................................................................. 35 3.1.1 Shoreline Management Act and Guidelines ........................................................................... 35 3.1.2 Relationship Between the SMA and the GMA ....................................................................... 35 3.1.2.1 Requirements for Critical Area Protection ........................................................................................ 36 3.1.2.2 Application of the Shoreline Science ................................................................................................. 37 3.1.2.3 No Net Loss of Ecological Functions ................................................................................................ 40 3.1.2.4 Snohomish County’s Critical Area Regulations ............................................................................... 41 3.2 SHORELINE GOALS, POLICIES AND REGULATIONS.................................................................................... 42 3.2.1 Permit Procedures and Requirements .................................................................................... 42 3.2.1.1 Comply with SMA/SMP standards even when no permit required ........................................... 42 3.2.2 Relationship to other regulatory requirements ....................................................................... 42 3.2.2.1 Comply with Critical Area Regulations ......................................................................................... 42 3.2.2.2 Comply with other applicable regulations .................................................................................... 43 3.2.3 Shoreline Use Element ............................................................................................................. 43 3.2.3.1 Goals and Policies........................................................................................................................... 43 3.2.3.2 Use Regulations .............................................................................................................................. 45 3.2.3.3 Bulk Regulations .............................................................................................................................. 46 3.2.3.4 Non-conforming Uses ..................................................................................................................... 49 3.2.3.5 Signs ................................................................................................................................................. 49 3.2.4 Public Access Element .............................................................................................................. 50 3.2.5 Specific Shoreline Uses & Modifications ................................................................................ 52 3.2.5.1 Agriculture ........................................................................................................................................ 54 3.2.5.2 Aquaculture ...................................................................................................................................... 56 Snohomish County Shoreline Management Program: Page 3 of 177 Shoreline Environment Designations, Policies and Regulations Approved by Washington State Department of Ecology, effective on July 27, 2012 3.2.5.3 Boating Facilities ............................................................................................................................. 58 3.2.5.4 Breakwaters, jetties, groins & other in-water structures ............................................................ 60 3.2.5.5 Commercial ...................................................................................................................................... 61 3.2.5.6 Dredging and dredge spoil disposal ............................................................................................. 62 3.2.5.7 Fill ...................................................................................................................................................... 63 3.2.5.8 Flood Protection Measures ............................................................................................................ 64 3.2.5.9 Forestry ............................................................................................................................................. 66 3.2.5.10 Industry and Ports ........................................................................................................................... 67 3.2.5.11 Institutional Uses ............................................................................................................................. 69 3.2.5.12 Mining ................................................................................................................................................ 70 3.2.5.13 Recreation .......................................................................................................................................
Recommended publications
  • Franklinwesleyearlynne1975
    AN ABSTRACT OF THE THESIS OF WESLEY EARLYNNE FRANKLIN for the degree Master of Science (Name of student) (Degree) in Geology presented on November 22, 1974 (Major department) (Date) Title: STRUCTURAL SIGNIFICANCE OF META-IGNEOUS FRAGMENTS IN THE PRAIRIE MOUNTAIN AREA, NORTH CASCADE RANGE, SNOHOMISH COUNTY, WASHINGTON Abstract approved by: Redacted for privacy Dr. Robert ID. Lawrence The interrelationship of rock assemblages in the Prairie Mountain area suggests that a Permo-Triassic subduction zone existed in the western North Cascades.The2fsquare mile rneta- igneous complex in the thesis area correlates with other tectonic bodies which occur west of the Straight Creek Fault.The rocks are uniquely associated with thrust faulting, a blueschist terrane and a possible melange of deformed Late Paleozoic sediments and meta- sediments.In the Prairie Mountain area the meta.- igneous rocks were emplaced by thrust and high-angle reversefaults into the Late Paleozoic Chilliwack Group.The meta-igneous rocks are metadio- rites, meta- quartz diorites, metatrondlijemites, mylonite gneis ses, rare greenstone metavoLcanic s and metamorphosed ultramafi.c s. Though the rocks were metamorphosed to the greenschist facies, only locally do they display a strong metamorphic fabric. A weak secondary cataclastic overprint resulting from ucoldtt intrusion is superimposed on the meta-igneous rocks. The meta-igneous rocks possibly represent fragments of island arc crust and/or oceanic crust that were incorporated into a Permo- Triassic subductj.on zone from a position
    [Show full text]
  • WDFW Wildlife Program Bi-Weekly Report August 1-15, 2020
    Wildlife Program – Bi-weekly Report August 1 to August 15, 2020 DIVERSITY DIVISION HERE’S WHAT WE’VE BEEN UP: 1) Managing Wildlife Populations Fishers: Fisher reintroduction project partners from Washington Department of Fish and Wildlife, the National Park Service, Conservation Northwest, Calgary Zoo, and United States Forest Service recently initiated a genetic analysis of fishers to predict the effect of augmenting ten new fishers to Olympic National Park. One main goal of the analysis is to determine how the success of the augmentation could differ depending on whether the fishers came from British Columbia versus; two genetically different source-populations. Using existing genotypes from British Columbia and Alberta fishers, this analysis will provide insights into the best source population of fishers to use for the planned augmentation to the Olympic National Park, where 90 fishers from British Columbia were reintroduced from 2008 to 2010. A 2019 genetic analysis of fishers on the Olympic Peninsula (based on hair samples collected at baited hair-snare and camera stations from 2013-2016) indicated that genetic diversity of the Olympic fisher population had declined slightly and would be expected to decline further in the future, which could put that population at risk. An augmentation of new fishers could restore this genetic diversity and this new analysis of the effects of releasing more British Columbia versus Alberta fishers into this population will help us decide the best source population and the best implementation approach. 2) Providing Recreation Opportunities Nothing for this installment. 3) Providing Conflict Prevention and Education Nothing for this installment. 4) Conserving Natural Areas Nothing for this installment.
    [Show full text]
  • Structure and Petrology of the Deer Peaks Area Western North Cascades, Washington
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 1986 Structure and Petrology of the Deer Peaks Area Western North Cascades, Washington Gregory Joseph Reller Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Reller, Gregory Joseph, "Structure and Petrology of the Deer Peaks Area Western North Cascades, Washington" (1986). WWU Graduate School Collection. 726. https://cedar.wwu.edu/wwuet/726 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. STRUCTURE AMD PETROLOGY OF THE DEER PEAKS AREA iVESTERN NORTH CASCADES, WASHIMGTa^ by Gregory Joseph Re Her Accepted in Partial Completion of the Requiremerjts for the Degree Master of Science February, 1986 School Advisory Comiiattee STRUCTURE AiO PETROIDGY OF THE DEER PEAKS AREA WESTERN NORTIi CASCADES, VC'oHINGTON A Thesis Presented to The Faculty of Western Washington University In Partial Fulfillment of the requirements for the Degree Master of Science by Gregory Joseph Re Her February, 1986 ABSTRACT Dominant bedrock mits of the Deer Peaks area, nortliv/estern Washington, include the Shiaksan Metamorphic Suite, the Deer Peaks unit, the Chuckanut Fontation, the Oso volcanic rocks and the Granite Lake Stock. Rocks of the Shuksan Metainorphic Suite (SMS) exhibit a stratigraphy of meta-basalt, iron/manganese schist, and carbonaceous phyllite. Tne shear sense of stretching lineations in the SMS indicates that dioring high pressure metamorphism ttie subduction zone dipped to the northeast relative to the present position of the rocks.
    [Show full text]
  • Structure and Petrology of the Grandy Ridge-Lake Shannon Area, North Cascades, Washington Moira T
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 1986 Structure and Petrology of the Grandy Ridge-Lake Shannon Area, North Cascades, Washington Moira T. (Moira Tracey) Smith Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Smith, Moira T. (Moira Tracey), "Structure and Petrology of the Grandy Ridge-Lake Shannon Area, North Cascades, Washington" (1986). WWU Graduate School Collection. 721. https://cedar.wwu.edu/wwuet/721 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without my written permission . Bellin^hum, W'Mihington 9HZZS □ izoai aTG-3000 STRUCTURE AND PETROLOGY OF THE GRANDY RIDGE-LAKE SHANNON AREA, NORTH CASCADES, WASHINGTON By Moira T. Smith Accepted in Partial Completion of the Requirements for the Degree Master of Science aduate School ADVISORY COMMITEE: Chairperson MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU.
    [Show full text]
  • North Cascades National Park I Mcallister Cutthroat Pass A
    To Hope, B.C. S ka 40mi 64km gi t R iv er Chilliwack S il Lake v e CHILLIWACK LAKE SKAGIT VALLEY r MANNING - S k a g PROVINCIAL PARK PROVINCIAL PARK i PROVINCIAL PARK t Ross Lake R o a d British Columbia CANADA Washington Hozomeen UNITED STATES S i Hozomeen Mountain le Silver Mount Winthrop s Sil Hoz 8066ft ia ve o Castle Peak 7850ft Lake r m 2459m Cr 8306ft 2393m ee e k e 2532m MOUNT BAKER WILDERNESS Little Jackass n C Mount Spickard re Mountain T B 8979ft r e l e a k i ar R 4387ft Hozomeen Castle Pass 2737m i a e d l r C ou 1337m T r b Lake e t G e k Mount Redoubt lacie 4-wheel-drive k r W c 8969ft conditions east Jack i Ridley Lake Twin a l of this point 2734m P lo w er Point i ry w k Lakes l Joker Mountain e l L re i C ak 7603ft n h e l r C R Tra ee i C i Copper Mountain a e re O l Willow 2317m t r v e le n 7142ft T i R k t F a e S k s o w R Lake a 2177m In d S e r u e o C k h g d e u c r Goat Mountain d i b u i a Hopkins t C h 6890ft R k n c Skagit Peak Pass C 2100m a C rail Desolation Peak w r r T 6800ft li Cre e ave 6102ft er il ek e e Be 2073m 542 p h k Littl 1860m p C o Noo R C ks i n a Silver Fir v k latio k ck c e ee Deso e Ro Cree k r Cr k k l e il e i r B e N a r Trail a C To Glacier r r O T r C Thre O u s T e Fool B (U.S.
    [Show full text]
  • Distribution and Abundance of Mountain Goats Within the Ross Lake Watershed, North Cascades National Park Service Complex
    ' I ; q£ 04. & 9) -~o3 Distribution and Abundance of Mountain Goats within the Ross Lake Watershed, North Cascades National Park Service Complex Final Report to Skagit Environmental Endowment Commission Sarah J. Welch Robert C. Kuntz II Ronald E. Holmes Roger G. Christophersen North Cascades National Park Service Complex 2105 State Route 20 Sedro-Woolley, Washington 98284-9314 December 1997 1997 SEC #10 . ' Table of Contents I. Introduction 1 2. Study Area 3. Methods 3 4. Results. 4 5. Discussion 5 6. Recommendations 6 7. Literature Cited 7 List of Figures 1. Figure 1: Mountain goat study area in Ross Lake watershed, North Cascades National Park Service Complex (1996-1997) 2 List of Tables 1. Table l: Mountain goat observations. 4 2. Table 2: Habitat characteristics where mountain goats were observed 5 Distribution and Abundance of Mountain Goats within the Ross Lake Watershed, North Cascades National Park Service Complex Introduction Mountain goats (Oreamnus americanus) are native to northwestern North America and can be found throughout the North Cascades National Park Service Complex (NOCA). Their habitat requirements are quite specific and suitable habitat is patchily distributed across the landscape. During a11 seasons, mountain goat habitat is characterized by steep, rocky terrain. Summer habitat is generally above 1525 m (5000 ft) elevation, and features rock outcrops in or near subalpine meadows and forest (Welch, 1991; Holmes, 1993; Schoen and Kirchoff, 1981; NCASI, 1989; Chadwick, 1983; Benzon and Rice, 1988). Many mountain goat populations in Washington have declined during the last 20 years. Although specific causes have not been identified, several factors may have contributed to the regional decline.
    [Show full text]
  • Redacted for Privacy Dr
    AN ABSTRACT OF THE THESIS OF PETER TREADWELL MILNES for the degree of Master of Science in Geology presented on October 22, 1976 Title: STRUCTURAL GEOLOGY AND METAMORPHIC PETROLOGY OF THE ILLABOT PEAKS AREA, SKAGIT COUNTY, WASHINGTON Abstract approved: Redacted for Privacy Dr. Robert Lawrence The Illabot Peaks area is composed of several essentially homo- clinal eastward dipping thrust blocks of Shuksan Schist which are comprised of olivine-free calc-alkaline basalt that has been meta- morphosed under greenschist to blueschist facies conditions.The structurally lower portions of the Shuksan Schist are occupied by a soda amphibole-bearing rock that probably originated from intercala- tions of high Po and high ferric iron content.The blocks of Shuksan 2 Schist rest upon ductile mega-shear zones of lower greenschist facies quartz-muscovite-graphite phyllite that have been tentatively corre- lated with the Darrington Phyllite.The Shuksan Schist and Darrington Phyllite, forming the Shuksan metamorphic suite, were syntecton- ically metamorphosed in the late Permian to early Triassic.The primary foliation, the amphibole lineations, and the intrafolial F 1 folds were formed at this time. The blocks of Shuksan Schist were emplaced during the Middle to early Late Cretaceous by movements on the large displacement Shuksan thrust.The thrust system in the Illabot Peaks area dips in a concave upward manner tothe east, has a large westward displace- ment, and is highly imbricated.Small lenticular pods of brecciated blueschist fragments and meta-igneous basement rock slivershave been tectonically emplaced along the margins of the thrust.The blueschist pods, retrogressively metamorphosed, are possibleindi- cators of a rock unit at depth of a higher faciesthan the typical Shuksan Schist.
    [Show full text]
  • Snohomish County Shoreline Management Program: Shoreline Environment Designations, Policies and Regulations 3.2.5.3 Boating and Boat Mooring Facilities
    Snohomish County Shoreline Management Program: Shoreline Environment Designations, Policies and Regulations Snohomish County Planning and Development Services Adopted by Amended Ordinance No. 12-025 on June 6, 2012 Approved by Washington State Department of Ecology on July 13, 2012, Effective July 27, 2012 Amended by Ordinance No. 13-098 on December 11, 2013 Approved by Washington State Department of Ecology on May 12, 2014, Effective May 27, 2014 Last amended by Amended Ordinance No. 19-020 on July 3, 2019 Approved by Washington State Department of Ecology on September 30, 2019, Effective October 14, 2019 Table of Contents 1. INTRODUCTION ........................................................................................................................................... 1 1.1 SHORELINE MANAGEMENT ACT .................................................................................................................. 1 1.2 SNOHOMISH COUNTY’S SHORELINE MANAGEMENT PROGRAM ................................................................... 1 1.2.1 Snohomish County Shoreline Jurisdiction ................................................................................ 1 1.2.1.1 List of Shorelines in Snohomish County ........................................................................................ 2 1.2.2 Shorelines of Statewide Significance ........................................................................................ 5 1.2.2.1 Management Principles and Development Guidelines ...............................................................
    [Show full text]
  • Dr. Robert D. Lawrence the Thesis Area Is Located in the Western Foothills of the North Three Major Rock Units Are Present and T
    AN ABSTRACT OF THE THESIS OF David Allen Jenne for the degree of Master of Science in Geology presented on March 15,1978 Title:STRUCTURAL GEOLOGY AND METAMORPHIC PETROLOGY OF THE GOLD MOUNTAIN AREA SNOHOMISH COUNTY WASHINGTON d' Abstract approved: Signature redacted for privacy. Dr. Robert D. Lawrence The thesis area is located in the western foothills of the North Cascade Mountains immediately east of Darrington, Washington. Three major rock units are present and these include, from west to east, the Darrington Phyllite, a sedimentary m1ange unit, and the Shuksan Schist.Each of these units is bounded by major faults.In the present thesis only the Darrington Phyllite and the melange unit were studied in detail. The Darrington Phyllite consists of phyllitic metapelites with very local interbedded graywacke, conglomerate, and greenschist. The phyllites contain alternating layers of quartz-albite and musco- vite-graphite.In some rocks, this compositional layering is equiva- lent to sedimentary bedding.However, in most locations,it has resulted from metamorphic processes involving the transposition of bedding and metamorphic differentiation during mimetic recrystal- lization. Greenschist is present as tectonically emplaced blocks and as very local interbeds in the phyllite.Along the western margin of the thesis area, greenschist and meta-igneous rocks have been faulted into place.These rocks probably are part of the Jumbo Mountain Complex. The interbedded greenschists contain lawsonite that has been altered to chlorite.This suggests that blueschist.-facies meta- morphism was followed by a temperature increase and greenschist- facies metamorphism. The mlange unit consists of blocks of sedimentary, meta- igneous, and metamorphic rocks in tectonic contact with a sheared pelitic matrix.
    [Show full text]
  • USGS Geologic Investigation Series I-2592, Pamphlet
    GEOLOGIC MAP OF THE SAUK RIVER 30- BY 60-MINUTE QUADRANGLE, WASHINGTON By R.W. Tabor, D.B. Booth, J.A. Vance, and A.B. Ford But lower, in every dip and valley, the forest is dense, of trees crowded and hugely grown, impassable with undergrowth as toughly woven as a fisherman’s net. Here and there, unnoticed until you stumble across them, are crags and bouldered screes of rock thickly clothed with thorn and creeper, invisible and deadly as a wolf trap.1 The Hollow Hills by Mary Stewart, 1973 INTRODUCTION AND Ortenburger for office and laboratory services. R.W. Tabor ACKNOWLEDGMENTS prepared the digital version of this map with considerable help from Kris Alvarez, Kathleen Duggan, Tracy Felger, Eric When Russell (1900) visited Cascade Pass in 1898, he Lehmer, Paddy McCarthy, Geoffry Phelps, Kea Umstadt, Carl began a geologic exploration which would blossom only after Wentworth, and Karen Wheeler. three-quarters of a century of growing geologic theory. The Paleontologists who helped immensely by identifying region encompassed by the Sauk River quadrangle is so struc- deformed, commonly recrystallized, and usually uninspiring turally complex that when Misch (1952) and his students fossils are Charles Blome, William Elder, Anita Harris, David began their monumental studies of the North Cascades in L. Jones, Jack W. Miller, and Kate Schindler. Chuck Blome 1948, the available geologic tools and theories were barely has been particularly helpful (see table 1). adequate to start deciphering the history. Subsequently, Bryant We thank John Whetten, Bob Zartman, and John Stacey (1955), Danner (1957), Jones (1959), Vance (1957a), Ford and his staff for unpublished U-Pb isotopic analyses (cited (1959), and Tabor (1961) sketched the fundamental outlines of in table 2).
    [Show full text]
  • Appendix F Generation Cost and Performance Appendix Fbi Biomass
    APPENDIX F GENERATION COST AND PERFORMANCE SUMMARY.........................................................................................................................................................................2 ANALYTICAL APPROACH............................................................................................................................................3 REPRESENTATIVE RESOURCE CHARACTERIZATIONS .............................................................................................................3 APPENDIX FBI BIOMASS APPENDIX FNU NUCLEAR POWER APPENDIX FCO COAL APPENDIX FOE OCEAN ENERGY APPENDIX FGT GEOTHERMAL APPENDIX FSO SOLAR APPENDIX FHY HYDROPOWER APPENDIX FWN WIND APPENDIX FNG NATURAL GAS F-1 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST AND PERFORMANCE SUMMARY Appendix F provides the analysis used to characterize the generating resource alternatives described in this draft plan. Table F-1 lists the types of resources analyzed and summarizes the resulting cost and resource potential. Following this overview are detailed descriptions of each resource. A brief description of the process used to analyze each resource follows. Table F-1 Generating Resource Costs and Potential Block Code Resource Base-Year Technology Ref. Lev. Energy CostsBlock Firm Energy (m/kWh, real): (MWa) GEO 1 Geothermal 1995 Flash or Binary 49.7 576 GEO 103 Geothermal 1995 Flash or Binary 49.7 576 GEO 2 Geothermal 1995 Flash or Binary 59.6 414 GEO 3 Geothermal 1995 Flash or Binary 72.8
    [Show full text]
  • This Report Is Preliminary and Has Not Been Reviewed for Conformity with U.S
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY ANNOTATED GUIDE TO GEOLOGIC REPORTS AND MAPS OF THE GLACIER PEAK WILDERNESS AND ADJACENT AREAS, NORTHERN CASCADES, WASHINGTON By Arthur B. Ford Open-File Report 83-97 1983 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and strati graphic nomenclature. CONTENTS Page Introduction 1 Acknowledgments 1 Miscellaneous topics 6 Glacier Peak volcano, volcanism, and thermal springs 7 Quaternary geology and glacier studies 11 Regional geology and geologic setting 14 Bedrock geology and petrology of the wilderness area 18 Geochronology and isotope studies 24 Geophysical studies 27 Mineral deposits and resource studies 28 ILLUSTRATIONS Figure 1. Location of the Glacier Peak Wilderness 2 Figure 2. Index to geologic mapping in and near the Glacier Peak Wilderness 3 Figure 3. Index to topographic map quadrangles of the Glacier Peak Wilderness and vicinity -- 5 INTRODUCTION This listing of reports and maps related to the geology, mineral resources, and other aspects of the Glacier Peak Wilderness and vicinity in the northern Cascade Mountains of Washington (fi<j. 1) was prepared as a background for 1979-82 field studies on the geol >gy (Ford and others, 1983), regional geophysics (Flanigan and Sherrard, 1983), and geochemistry (Church and others, 1983) of the Wilderness by the U.S. Geological Survey. The studies were part of an investigation of the mineral-resource potential of the Wilderness by the Survey and the U.S. Bureau of Mines, results of which are given, by Church and others (in press) and summarized by Church and Stotelmeyer (in press).
    [Show full text]